Last active
June 1, 2019 02:38
-
-
Save ilblackdragon/dfaefa3ac6097dbc27de to your computer and use it in GitHub Desktop.
Titanic dataset - Categorical example
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import random | |
import pandas | |
import numpy as np | |
from sklearn import metrics, cross_validation | |
import tensorflow as tf | |
from tensorflow.contrib import layers | |
from tensorflow.contrib import learn | |
random.seed(42) | |
data = pandas.read_csv('data/titanic_train.csv') | |
X = data[["Embarked"]] | |
y = data["Survived"] | |
X_train, X_test, y_train, y_test = cross_validation.train_test_split(X, y, test_size=0.2, random_state=42) | |
embarked_classes = X_train["Embarked"].unique() | |
n_classes = len(embarked_classes) + 1 | |
print('Embarked has next classes: ', embarked_classes) | |
cat_processor = learn.preprocessing.CategoricalProcessor() | |
X_train = np.array(list(cat_processor.fit_transform(X_train))) | |
X_test = np.array(list(cat_processor.transform(X_test))) | |
### Embeddings | |
EMBEDDING_SIZE = 3 | |
def categorical_model(features, target): | |
target = tf.one_hot(target, 2, 1.0, 0.0) | |
features = learn.ops.categorical_variable( | |
features, n_classes, embedding_size=EMBEDDING_SIZE, name='embarked') | |
prediction, loss = learn.models.logistic_regression(tf.squeeze(features, [1]), target) | |
train_op = layers.optimize_loss(loss, | |
tf.contrib.framework.get_global_step(), optimizer='SGD', learning_rate=0.05) | |
return tf.argmax(prediction, dimension=1), loss, train_op | |
classifier = learn.Estimator(model_fn=categorical_model) | |
classifier.fit(X_train, y_train, steps=1000) | |
print("Accuracy: {0}".format(metrics.accuracy_score(classifier.predict(X_test), y_test))) | |
print("ROC: {0}".format(metrics.roc_auc_score(classifier.predict(X_test), y_test))) | |
### One Hot | |
def one_hot_categorical_model(features, target): | |
target = tf.one_hot(target, 2, 1.0, 0.0) | |
features = tf.one_hot(features, n_classes, 1.0, 0.0) | |
prediction, loss = learn.models.logistic_regression( | |
tf.squeeze(features, [1]), target) | |
train_op = layers.optimize_loss(loss, | |
tf.contrib.framework.get_global_step(), optimizer='SGD', | |
learning_rate=0.01) | |
return tf.argmax(prediction, dimension=1), loss, train_op | |
classifier = learn.Estimator(model_fn=one_hot_categorical_model) | |
classifier.fit(X_train, y_train, steps=1000) | |
print("Accuracy: {0}".format(metrics.accuracy_score(classifier.predict(X_test), y_test))) | |
print("ROC: {0}".format(metrics.roc_auc_score(classifier.predict(X_test), y_test))) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment