Last active
August 29, 2023 12:39
-
-
Save ilciavo/b112168ff3af009156db to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
% matplotlib inline | |
#modified from | |
#http://nbviewer.ipython.org/github/diogro/ode_examples/blob/master/The%20Fisher-Kolmogorov%20equation.ipynb?create=1 | |
from numpy import * | |
from scipy.integrate import odeint | |
from matplotlib.pyplot import plot, xlabel, ylabel, figure, axes, style | |
style.use('ggplot') | |
#import time | |
from timeit import default_timer as timer | |
import Fmodules | |
import Cmodules | |
# the size of the spatial domain | |
# his is actual size, such as "kilometres" | |
L = 50. | |
a = -L | |
b = L | |
t0 = 0.0 | |
t1 = 20.0*2 | |
# the number of points in the grid | |
#grid_size = 100 | |
NX = 401*2 | |
NT = 101 | |
# the integration times | |
ts = linspace(t0, t1, NT) | |
h = ts[1]-ts[0] | |
# the grid | |
xm = linspace(a,b,NX) | |
dx = xm[1]-xm[0] | |
kc = 0.5*h/(dx*dx) | |
# the initial condition, consisting of a small "square" in the middle | |
#y0 = zeros_like(grid) | |
#y0[grid_size//2 - 2:grid_size//2 + 2] = 0.1 | |
#u0 = zeros_like(xm) # population density | |
#u0[NX//2 - 2 : NX//2 + 2] = 0.1 #initial values | |
#u0[abs(xm)<1]=1 #initial values | |
def AblowitzZeppetella(x,t): | |
return 1./((1+exp(-5/6*t+sqrt(6)*xm/6))**2) | |
u0 = AblowitzZeppetella(xm,ts[0]) | |
def fkpp(u, t, dx, d): | |
# spatial second derivative | |
d2x = -2 * u | |
d2x[1:-1] += u[2:] + u[:-2] | |
d2x[0] += u[1] | |
d2x[-1] += u[-2] | |
d2x = d2x/(dx*dx) | |
#add the reaction terms | |
du = u * (1. - u) + d2x | |
return du | |
u = odeint(fkpp, u0, ts, (dx,0)) | |
u_anal=zeros_like(u) | |
for i,t in enumerate(ts): | |
u_anal[i,:] = AblowitzZeppetella(xm,t) | |
from JSAnimation.IPython_display import display_animation | |
from matplotlib import animation | |
fig = figure(figsize=(8,5)) | |
ax = axes(xlim=(-L,L), ylim=(0,1.01)) | |
line = ax.plot([], [], color='#003366', ls='--', lw=3)[0] | |
lineAnal = ax.plot([], [], color='red', ls='--', lw=3)[0] | |
# let's plot the solution | |
#plot(xm, u[0,:]) | |
xlabel('space') | |
ylabel('u') | |
def fisher_kolmogorov(i): | |
line.set_data(xm,u[i,:]) | |
lineAnal.set_data(xm,u_anal[i,:]) | |
anim=animation.FuncAnimation(fig, fisher_kolmogorov,frames=NT, interval=100) | |
anim.save('FKPP.gif', writer='imagemagick', fps=4); |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment