Last active
August 29, 2015 14:21
-
-
Save ilyakava/50c2abbbd51a6f3baf4e to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
This tutorial introduces the multilayer perceptron using Theano. | |
A multilayer perceptron is a logistic regressor where | |
instead of feeding the input to the logistic regression you insert a | |
intermediate layer, called the hidden layer, that has a nonlinear | |
activation function (usually tanh or sigmoid) . One can use many such | |
hidden layers making the architecture deep. The tutorial will also tackle | |
the problem of MNIST digit classification. | |
.. math:: | |
f(x) = G( b^{(2)} + W^{(2)}( s( b^{(1)} + W^{(1)} x))), | |
References: | |
- textbooks: "Pattern Recognition and Machine Learning" - | |
Christopher M. Bishop, section 5 | |
""" | |
__docformat__ = 'restructedtext en' | |
import os | |
import sys | |
import time | |
import numpy | |
import theano | |
import theano.tensor as T | |
from orig_logistic_sgd import LogisticRegression, load_data | |
# start-snippet-1 | |
class HiddenLayer(object): | |
def __init__(self, rng, input, n_in, n_out, W=None, b=None, | |
activation=T.tanh): | |
""" | |
Typical hidden layer of a MLP: units are fully-connected and have | |
sigmoidal activation function. Weight matrix W is of shape (n_in,n_out) | |
and the bias vector b is of shape (n_out,). | |
NOTE : The nonlinearity used here is tanh | |
Hidden unit activation is given by: tanh(dot(input,W) + b) | |
:type rng: numpy.random.RandomState | |
:param rng: a random number generator used to initialize weights | |
:type input: theano.tensor.dmatrix | |
:param input: a symbolic tensor of shape (n_examples, n_in) | |
:type n_in: int | |
:param n_in: dimensionality of input | |
:type n_out: int | |
:param n_out: number of hidden units | |
:type activation: theano.Op or function | |
:param activation: Non linearity to be applied in the hidden | |
layer | |
""" | |
self.input = input | |
# end-snippet-1 | |
# `W` is initialized with `W_values` which is uniformely sampled | |
# from sqrt(-6./(n_in+n_hidden)) and sqrt(6./(n_in+n_hidden)) | |
# for tanh activation function | |
# the output of uniform if converted using asarray to dtype | |
# theano.config.floatX so that the code is runable on GPU | |
# Note : optimal initialization of weights is dependent on the | |
# activation function used (among other things). | |
# For example, results presented in [Xavier10] suggest that you | |
# should use 4 times larger initial weights for sigmoid | |
# compared to tanh | |
# We have no info for other function, so we use the same as | |
# tanh. | |
if W is None: | |
W_values = numpy.asarray( | |
rng.uniform( | |
low=-numpy.sqrt(6. / (n_in + n_out)), | |
high=numpy.sqrt(6. / (n_in + n_out)), | |
size=(n_in, n_out) | |
), | |
dtype=theano.config.floatX | |
) | |
if activation == theano.tensor.nnet.sigmoid: | |
W_values *= 4 | |
W = theano.shared(value=W_values, name='W', borrow=True) | |
if b is None: | |
b_values = numpy.zeros((n_out,), dtype=theano.config.floatX) | |
b = theano.shared(value=b_values, name='b', borrow=True) | |
self.W = W | |
self.b = b | |
lin_output = T.dot(input, self.W) + self.b | |
self.output = ( | |
lin_output if activation is None | |
else activation(lin_output) | |
) | |
# parameters of the model | |
self.params = [self.W, self.b] | |
# start-snippet-2 | |
class MLP(object): | |
"""Multi-Layer Perceptron Class | |
A multilayer perceptron is a feedforward artificial neural network model | |
that has one layer or more of hidden units and nonlinear activations. | |
Intermediate layers usually have as activation function tanh or the | |
sigmoid function (defined here by a ``HiddenLayer`` class) while the | |
top layer is a softamx layer (defined here by a ``LogisticRegression`` | |
class). | |
""" | |
def __init__(self, rng, input, n_in, n_hidden, n_out): | |
"""Initialize the parameters for the multilayer perceptron | |
:type rng: numpy.random.RandomState | |
:param rng: a random number generator used to initialize weights | |
:type input: theano.tensor.TensorType | |
:param input: symbolic variable that describes the input of the | |
architecture (one minibatch) | |
:type n_in: int | |
:param n_in: number of input units, the dimension of the space in | |
which the datapoints lie | |
:type n_hidden: int | |
:param n_hidden: number of hidden units | |
:type n_out: int | |
:param n_out: number of output units, the dimension of the space in | |
which the labels lie | |
""" | |
# Since we are dealing with a one hidden layer MLP, this will translate | |
# into a HiddenLayer with a tanh activation function connected to the | |
# LogisticRegression layer; the activation function can be replaced by | |
# sigmoid or any other nonlinear function | |
self.hiddenLayer = HiddenLayer( | |
rng=rng, | |
input=input, | |
n_in=n_in, | |
n_out=n_hidden, | |
activation=T.tanh | |
) | |
# The logistic regression layer gets as input the hidden units | |
# of the hidden layer | |
self.logRegressionLayer = LogisticRegression( | |
input=self.hiddenLayer.output, | |
n_in=n_hidden, | |
n_out=n_out | |
) | |
# end-snippet-2 start-snippet-3 | |
# L1 norm ; one regularization option is to enforce L1 norm to | |
# be small | |
self.L1 = ( | |
abs(self.hiddenLayer.W).sum() | |
+ abs(self.logRegressionLayer.W).sum() | |
) | |
# square of L2 norm ; one regularization option is to enforce | |
# square of L2 norm to be small | |
self.L2_sqr = ( | |
(self.hiddenLayer.W ** 2).sum() | |
+ (self.logRegressionLayer.W ** 2).sum() | |
) | |
# negative log likelihood of the MLP is given by the negative | |
# log likelihood of the output of the model, computed in the | |
# logistic regression layer | |
self.negative_log_likelihood = ( | |
self.logRegressionLayer.negative_log_likelihood | |
) | |
# same holds for the function computing the number of errors | |
self.errors = self.logRegressionLayer.errors | |
# the parameters of the model are the parameters of the two layer it is | |
# made out of | |
self.params = self.hiddenLayer.params + self.logRegressionLayer.params | |
# end-snippet-3 | |
def test_mlp(learning_rate=0.01, L1_reg=0.00, L2_reg=0.0001, n_epochs=1000, | |
dataset='mnist.pkl.gz', batch_size=20, n_hidden=500): | |
""" | |
Demonstrate stochastic gradient descent optimization for a multilayer | |
perceptron | |
This is demonstrated on MNIST. | |
:type learning_rate: float | |
:param learning_rate: learning rate used (factor for the stochastic | |
gradient | |
:type L1_reg: float | |
:param L1_reg: L1-norm's weight when added to the cost (see | |
regularization) | |
:type L2_reg: float | |
:param L2_reg: L2-norm's weight when added to the cost (see | |
regularization) | |
:type n_epochs: int | |
:param n_epochs: maximal number of epochs to run the optimizer | |
:type dataset: string | |
:param dataset: the path of the MNIST dataset file from | |
http://www.iro.umontreal.ca/~lisa/deep/data/mnist/mnist.pkl.gz | |
""" | |
datasets = load_data(dataset) | |
train_set_x, train_set_y = datasets[0] | |
valid_set_x, valid_set_y = datasets[1] | |
test_set_x, test_set_y = datasets[2] | |
# compute number of minibatches for training, validation and testing | |
n_train_batches = train_set_x.get_value(borrow=True).shape[0] / batch_size | |
n_valid_batches = valid_set_x.get_value(borrow=True).shape[0] / batch_size | |
n_test_batches = test_set_x.get_value(borrow=True).shape[0] / batch_size | |
###################### | |
# BUILD ACTUAL MODEL # | |
###################### | |
print '... building the model' | |
# allocate symbolic variables for the data | |
index = T.lscalar() # index to a [mini]batch | |
x = T.matrix('x') # the data is presented as rasterized images | |
y = T.ivector('y') # the labels are presented as 1D vector of | |
# [int] labels | |
rng = numpy.random.RandomState(1234) | |
# construct the MLP class | |
classifier = MLP( | |
rng=rng, | |
input=x, | |
n_in=28 * 28, | |
n_hidden=n_hidden, | |
n_out=10 | |
) | |
# start-snippet-4 | |
# the cost we minimize during training is the negative log likelihood of | |
# the model plus the regularization terms (L1 and L2); cost is expressed | |
# here symbolically | |
cost = ( | |
classifier.negative_log_likelihood(y) | |
+ L1_reg * classifier.L1 | |
+ L2_reg * classifier.L2_sqr | |
) | |
# end-snippet-4 | |
# compiling a Theano function that computes the mistakes that are made | |
# by the model on a minibatch | |
test_model = theano.function( | |
inputs=[index], | |
outputs=classifier.errors(y), | |
givens={ | |
x: test_set_x[index * batch_size:(index + 1) * batch_size], | |
y: test_set_y[index * batch_size:(index + 1) * batch_size] | |
} | |
) | |
validate_model = theano.function( | |
inputs=[index], | |
outputs=classifier.errors(y), | |
givens={ | |
x: valid_set_x[index * batch_size:(index + 1) * batch_size], | |
y: valid_set_y[index * batch_size:(index + 1) * batch_size] | |
} | |
) | |
# start-snippet-5 | |
# compute the gradient of cost with respect to theta (sotred in params) | |
# the resulting gradients will be stored in a list gparams | |
gparams = [T.grad(cost, param) for param in classifier.params] | |
# specify how to update the parameters of the model as a list of | |
# (variable, update expression) pairs | |
# given two list the zip A = [a1, a2, a3, a4] and B = [b1, b2, b3, b4] of | |
# same length, zip generates a list C of same size, where each element | |
# is a pair formed from the two lists : | |
# C = [(a1, b1), (a2, b2), (a3, b3), (a4, b4)] | |
updates = [ | |
(param, param - learning_rate * gparam) | |
for param, gparam in zip(classifier.params, gparams) | |
] | |
# compiling a Theano function `train_model` that returns the cost, but | |
# in the same time updates the parameter of the model based on the rules | |
# defined in `updates` | |
train_model = theano.function( | |
inputs=[index], | |
outputs=cost, | |
updates=updates, | |
givens={ | |
x: train_set_x[index * batch_size: (index + 1) * batch_size], | |
y: train_set_y[index * batch_size: (index + 1) * batch_size] | |
} | |
) | |
# end-snippet-5 | |
############### | |
# TRAIN MODEL # | |
############### | |
print '... training' | |
# early-stopping parameters | |
patience = 10000 # look as this many examples regardless | |
patience_increase = 2 # wait this much longer when a new best is | |
# found | |
improvement_threshold = 0.995 # a relative improvement of this much is | |
# considered significant | |
validation_frequency = min(n_train_batches, patience / 2) | |
# go through this many | |
# minibatche before checking the network | |
# on the validation set; in this case we | |
# check every epoch | |
best_validation_loss = numpy.inf | |
best_iter = 0 | |
test_score = 0. | |
start_time = time.clock() | |
epoch = 0 | |
done_looping = False | |
while (epoch < n_epochs) and (not done_looping): | |
epoch = epoch + 1 | |
for minibatch_index in xrange(n_train_batches): | |
minibatch_avg_cost = train_model(minibatch_index) | |
# iteration number | |
iter = (epoch - 1) * n_train_batches + minibatch_index | |
if (iter + 1) % validation_frequency == 0: | |
# compute zero-one loss on validation set | |
validation_losses = [validate_model(i) for i | |
in xrange(n_valid_batches)] | |
this_validation_loss = numpy.mean(validation_losses) | |
print( | |
'epoch %i, minibatch %i/%i, validation error %f %%' % | |
( | |
epoch, | |
minibatch_index + 1, | |
n_train_batches, | |
this_validation_loss * 100. | |
) | |
) | |
# if we got the best validation score until now | |
if this_validation_loss < best_validation_loss: | |
#improve patience if loss improvement is good enough | |
if ( | |
this_validation_loss < best_validation_loss * | |
improvement_threshold | |
): | |
patience = max(patience, iter * patience_increase) | |
best_validation_loss = this_validation_loss | |
best_iter = iter | |
# test it on the test set | |
test_losses = [test_model(i) for i | |
in xrange(n_test_batches)] | |
test_score = numpy.mean(test_losses) | |
print((' epoch %i, minibatch %i/%i, test error of ' | |
'best model %f %%') % | |
(epoch, minibatch_index + 1, n_train_batches, | |
test_score * 100.)) | |
if patience <= iter: | |
done_looping = True | |
break | |
end_time = time.clock() | |
print(('Optimization complete. Best validation score of %f %% ' | |
'obtained at iteration %i, with test performance %f %%') % | |
(best_validation_loss * 100., best_iter + 1, test_score * 100.)) | |
print >> sys.stderr, ('The code for file ' + | |
os.path.split(__file__)[1] + | |
' ran for %.2fm' % ((end_time - start_time) / 60.)) | |
if __name__ == '__main__': | |
test_mlp() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment