Last active
March 1, 2020 07:08
-
-
Save ilyakava/c2ef8aed4ad510ee3987 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# usage: `python ~/Desktop/hough_by_hand.py 1994-654-12_v02.tif` | |
# output is a plot that pops up | |
import cv2 | |
import numpy as np | |
from matplotlib import pyplot as plt | |
import sys | |
import math | |
import pdb | |
# Loading image | |
if len(sys.argv) == 2: | |
filename = sys.argv[1] | |
else: | |
print "No input image given! \n" | |
img_orig = cv2.imread(filename,) | |
img = img_orig[:,:,::-1] # color channel plotting mess http://stackoverflow.com/a/15074748/2256243 | |
# http://nabinsharma.wordpress.com/2012/12/26/linear-hough-transform-using-python/ | |
def hough_transform(img_bin, theta_res=1, rho_res=1): | |
nR,nC = img_bin.shape | |
theta = np.linspace(-90.0, 0.0, np.ceil(90.0/theta_res) + 1.0) | |
theta = np.concatenate((theta, -theta[len(theta)-2::-1])) | |
D = np.sqrt((nR - 1)**2 + (nC - 1)**2) | |
q = np.ceil(D/rho_res) | |
nrho = 2*q + 1 | |
rho = np.linspace(-q*rho_res, q*rho_res, nrho) | |
H = np.zeros((len(rho), len(theta))) | |
for rowIdx in range(nR): | |
for colIdx in range(nC): | |
if img_bin[rowIdx, colIdx]: | |
for thIdx in range(len(theta)): | |
rhoVal = colIdx*np.cos(theta[thIdx]*np.pi/180.0) + \ | |
rowIdx*np.sin(theta[thIdx]*np.pi/180) | |
rhoIdx = np.nonzero(np.abs(rho-rhoVal) == np.min(np.abs(rho-rhoVal)))[0] | |
H[rhoIdx[0], thIdx] += 1 | |
return rho, theta, H | |
def top_n_rho_theta_pairs(ht_acc_matrix, n, rhos, thetas): | |
''' | |
@param hough transform accumulator matrix H (rho by theta) | |
@param n pairs of rho and thetas desired | |
@param ordered array of rhos represented by rows in H | |
@param ordered array of thetas represented by columns in H | |
@return top n rho theta pairs in H by accumulator value | |
@return x,y indexes in H of top n rho theta pairs | |
''' | |
flat = list(set(np.hstack(ht_acc_matrix))) | |
flat_sorted = sorted(flat, key = lambda n: -n) | |
coords_sorted = [(np.argwhere(ht_acc_matrix == acc_value)) for acc_value in flat_sorted[0:n]] | |
rho_theta = [] | |
x_y = [] | |
for coords_for_val_idx in range(0, len(coords_sorted), 1): | |
coords_for_val = coords_sorted[coords_for_val_idx] | |
for i in range(0, len(coords_for_val), 1): | |
n,m = coords_for_val[i] # n by m matrix | |
rho = rhos[n] | |
theta = thetas[m] | |
rho_theta.append([rho, theta]) | |
x_y.append([m, n]) # just to unnest and reorder coords_sorted | |
return [rho_theta[0:n], x_y] | |
def valid_point(pt, ymax, xmax): | |
''' | |
@return True/False if pt is with bounds for an xmax by ymax image | |
''' | |
x, y = pt | |
if x <= xmax and x >= 0 and y <= ymax and y >= 0: | |
return True | |
else: | |
return False | |
def round_tup(tup): | |
''' | |
@return closest integer for each number in a point for referencing | |
a particular pixel in an image | |
''' | |
x,y = [int(round(num)) for num in tup] | |
return (x,y) | |
def draw_rho_theta_pairs(target_im, pairs): | |
''' | |
@param opencv image | |
@param array of rho and theta pairs | |
Has the side-effect of drawing a line corresponding to a rho theta | |
pair on the image provided | |
''' | |
im_y_max, im_x_max, channels = np.shape(target_im) | |
for i in range(0, len(pairs), 1): | |
point = pairs[i] | |
rho = point[0] | |
theta = point[1] * np.pi / 180 # degrees to radians | |
# y = mx + b form | |
m = -np.cos(theta) / np.sin(theta) | |
b = rho / np.sin(theta) | |
# possible intersections on image edges | |
left = (0, b) | |
right = (im_x_max, im_x_max * m + b) | |
top = (-b / m, 0) | |
bottom = ((im_y_max - b) / m, im_y_max) | |
pts = [pt for pt in [left, right, top, bottom] if valid_point(pt, im_y_max, im_x_max)] | |
if len(pts) == 2: | |
cv2.line(target_im, round_tup(pts[0]), round_tup(pts[1]), (0,0,255), 1) | |
bw = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) | |
edges = cv2.Canny(bw, threshold1 = 0, threshold2 = 50, apertureSize = 3) | |
rhos, thetas, H = hough_transform(edges) | |
rho_theta_pairs, x_y_pairs = top_n_rho_theta_pairs(H, 22, rhos, thetas) | |
im_w_lines = img.copy() | |
draw_rho_theta_pairs(im_w_lines, rho_theta_pairs) | |
# also going to draw circles in the accumulator matrix | |
for i in range(0, len(x_y_pairs), 1): | |
x, y = x_y_pairs[i] | |
cv2.circle(img = H, center = (x, y), radius = 12, color=(0,0,0), thickness = 1) | |
plt.subplot(141),plt.imshow(img) | |
plt.title('Original Image'), plt.xticks([]), plt.yticks([]) | |
plt.subplot(142),plt.imshow(edges,cmap = 'gray') | |
plt.title('Image Edges'), plt.xticks([]), plt.yticks([]) | |
plt.subplot(143),plt.imshow(H) | |
plt.title('Hough Transform Accumulator'), plt.xticks([]), plt.yticks([]) | |
plt.subplot(144),plt.imshow(im_w_lines) | |
plt.title('Detected Lines'), plt.xticks([]), plt.yticks([]) | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment