Skip to content

Instantly share code, notes, and snippets.

View ilyakava's full-sized avatar

Ilya Kavalerov ilyakava

View GitHub Profile
import matplotlib
matplotlib.use('Agg')
from skimage.io import imread
matplotlib.rcParams.update({'font.size': 2})
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import AxesGrid
import sys
import numpy as np
import scipy.ndimage as nd
# assumes the images have been downloaded from imagenet and are named:
# bird.tar car.tar circle.tar flower.tar horse.tar house.tar mountain.tar tree.tar woman.tar
TAGS=( car tree circle house mountain bird flower horse woman )
# total=7577
LIMS=( 738 797 836 839 849 853 856 895 914 )
# list contents of tarballs and shave off file extension
for tag in "${TAGS[@]}"; do tar -tf $tag.tar | sed 's/.JPEG$//' > $tag.txt; done
# append my chosen class numbers for each class (hand is the missing #2)
@ilyakava
ilyakava / epub.sh
Created August 2, 2015 12:02
Input an arg of a file of a list of links, get an output.epub of all those webpages concatenated
#!/bin/bash
COUNT=1
for link in $(cat $1)
do
wget -O - -o /dev/null $link | iconv -f iso8859-1 -t utf-8 > $COUNT.html
COUNT=$(echo $COUNT + 1 |bc)
done
#include <stdio.h>
#include <stdlib.h>
#define BLOCK_WIDTH 1000
void print_array(int *array, int size)
{
printf("{ ");
for (int i = 0; i < size; i++) { printf("%d ", array[i]); }
printf("}\n");
@ilyakava
ilyakava / mlp.py
Last active August 29, 2015 14:21
"""
This tutorial introduces the multilayer perceptron using Theano.
A multilayer perceptron is a logistic regressor where
instead of feeding the input to the logistic regression you insert a
intermediate layer, called the hidden layer, that has a nonlinear
activation function (usually tanh or sigmoid) . One can use many such
hidden layers making the architecture deep. The tutorial will also tackle
the problem of MNIST digit classification.
"""
This tutorial introduces logistic regression using Theano and stochastic
gradient descent.
Logistic regression is a probabilistic, linear classifier. It is parametrized
by a weight matrix :math:`W` and a bias vector :math:`b`. Classification is
done by projecting data points onto a set of hyperplanes, the distance to
which is used to determine a class membership probability.
Mathematically, this can be written as:
#include "opencv2/core/core_c.h"
#include "opencv2/core/core.hpp"
#include "opencv2/flann/miniflann.hpp"
#include "opencv2/imgproc/imgproc_c.h"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/video/video.hpp"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/objdetect/objdetect.hpp"
#include "opencv2/calib3d/calib3d.hpp"
#include "opencv2/ml/ml.hpp"
# On: Ubuntu 14.10 (Utopic Unicorn), used with opencv 2.4.11 and cuda-7.0 for Quadro NVS 510
# Also successfuly tested On: Ubuntu 14.10 (Utopic Unicorn), used with opencv 3.0.0 and cuda-7.0 for Tesla K40c
set -o errexit
echo "Removing any pre-installed ffmpeg and x264"
sudo apt-get -qq remove ffmpeg x264 libx264-dev libavcodec-dev libavformat-dev libavdevice-dev libavutil-dev
echo "Installing ffmpeg from source"
sudo apt-get -qq install git
git clone git://source.ffmpeg.org/ffmpeg.git
cd ffmpeg
#include <stdio.h>
__global__ void cube(float * d_out, float * d_in){
// Todo: Fill in this function
int idx = threadIdx.x;
float f = d_in[idx];
d_out[idx] = f * f * f;
}
int main(int argc, char ** argv) {
@ilyakava
ilyakava / ima_image_links
Created March 5, 2015 21:15
Ima images links