Last active
October 21, 2021 21:43
-
-
Save ilyasst/7fcafc757e1f045845ecc9e914a3f79e to your computer and use it in GitHub Desktop.
Fenisc fiber inclusion thermomechanical problem: two materials
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from dolfin import * | |
from mshr import * | |
import numpy as np | |
import matplotlib.pyplot as plt | |
# https://comet-fenics.readthedocs.io/en/latest/demo/thermoelasticity/thermoelasticity_transient.html#References | |
L = 1. | |
R = 0.4 | |
N = 50 # mesh density | |
domain = Rectangle(dolfin.Point(0., 0.), dolfin.Point(L, L)) | |
# subdomain 0 = matrix | |
domain.set_subdomain(1, Rectangle(dolfin.Point(0., 0.), dolfin.Point(L, L))) | |
# subdomain 1 = fiber | |
domain.set_subdomain(2, Circle(Point(0., 0.), R) ) | |
mesh = generate_mesh(domain, N) | |
dolfin.info(domain, True) | |
dolfin.plot(mesh, "2D mesh") | |
subdomains = dolfin.MeshFunction("size_t", mesh, 2, mesh.domains()) | |
dolfin.plot(subdomains, "Subd") | |
plt.show() | |
T0 = Constant(70.) | |
#DThole = Constant(10.) | |
Em, num = 2500., 0.46 | |
Ef, nuf = 500., 0.36 | |
alphaf, alpham = 129.0E-6, 61.2E-6 | |
class Young(UserExpression): | |
def __init__(self, subdomains, E_0, E_1, **kwargs): | |
self.subdomains = subdomains | |
self.E_0 = E_0 | |
self.E_1 = E_1 | |
super().__init__(**kwargs) | |
def eval_cell(self, values, x, cell): | |
if self.subdomains[cell.index] == 0: | |
values[0] = self.E_0 | |
else: | |
values[0] = self.E_1 | |
def value_shape(self): | |
return (2,) | |
class Poisson(UserExpression): | |
def __init__(self, subdomains, E_0, E_1, **kwargs): | |
self.subdomains = subdomains | |
self.E_0 = E_0 | |
self.E_1 = E_1 | |
super().__init__(**kwargs) | |
def eval_cell(self, values, x, cell): | |
if self.subdomains[cell.index] == 0: | |
values[0] = self.E_0 | |
else: | |
values[0] = self.E_1 | |
def value_shape(self): | |
return (2,) | |
class CTE(UserExpression): | |
def __init__(self, subdomains, E_0, E_1, **kwargs): | |
self.subdomains = subdomains | |
self.E_0 = E_0 | |
self.E_1 = E_1 | |
super().__init__(**kwargs) | |
def eval_cell(self, values, x, cell): | |
if self.subdomains[cell.index] == 0: | |
values[0] = self.E_0 | |
else: | |
values[0] = self.E_1 | |
def value_shape(self): | |
return (2,) | |
E = Young(subdomains, Em, Ef, degree=0) | |
nu = Poisson(subdomains, num, nuf, degree=0) | |
alpha = CTE(subdomains, alphaf, alpham, degree=0 ) | |
nu = 0.3 | |
lmbda = UserExpression(E*nu/((1+nu)*(1-2*nu))) | |
mu = UserExpression(E/2/(1+nu)) | |
rho = 2700. # density | |
kappa = UserExpression(alpha*(2*mu + 3*lmbda)) | |
cV = Constant(910e-6)*rho # specific heat per unit volume at constant strain | |
k = Constant(237e-6) # thermal conductivity | |
d = 1 # interpolation degree | |
Vue = VectorElement('CG', mesh.ufl_cell(), d) # displacement finite element | |
Vte = FiniteElement('CG', mesh.ufl_cell(), d) # temperature finite element | |
V = FunctionSpace(mesh, MixedElement([Vue, Vte])) | |
def inner_boundary(x, on_boundary): | |
return near(x[0]**2+x[1]**2, R**2, 1e-3) | |
def bottom(x, on_boundary): | |
return near(x[1], 0) and on_boundary | |
def left(x, on_boundary): | |
return near(x[0], 0) and on_boundary | |
bc1 = DirichletBC(V.sub(0).sub(1), Constant(0.), bottom) | |
bc2 = DirichletBC(V.sub(0).sub(0), Constant(0.), left) | |
bc3 = DirichletBC(V.sub(1), 10, inner_boundary) | |
bcs = [bc1, bc2, bc3] | |
# Variational formulation and time discretization | |
U_ = TestFunction(V) | |
(u_, T_) = split(U_) | |
dU = TrialFunction(V) | |
(du, dT) = split(dU) | |
Uold = Function(V) | |
(uold, Told) = split(Uold) | |
def eps(v): | |
return sym(grad(v)) | |
def sigma(v, dT): | |
return (lmbda*tr(eps(v)) - kappa*dT)*Identity(2) + 2*mu*eps(v) | |
dt = Constant(0.) | |
mech_form = inner(sigma(du, dT), eps(u_))*dx | |
therm_form = (cV*(dT-Told)/dt*T_ + kappa*T0*tr(eps(du-uold))/dt*T_ + dot(k*grad(dT), grad(T_)))*dx | |
form = mech_form + therm_form | |
# Resolution | |
Nincr = 1 | |
t = np.logspace(1, 4, Nincr+1) | |
Nx = 100 | |
x = np.linspace(R, L, Nx) | |
T_res = np.zeros((Nx, Nincr+1)) | |
U = Function(V) | |
(u, T) = split(U) | |
for (i, dti) in enumerate(np.diff(t)): | |
print("Increment " + str(i+1)) | |
dt.assign(dti) | |
solve(lhs(form) == rhs(form), U, bcs) | |
Uold.assign(U) | |
T_res[:, i+1] = [U(xi, 0.)[2] for xi in x] | |
plt.figure() | |
p = plot(sigma(u, T)[1,1], title="$\sigma_{yy}$ stress near the hole") | |
plt.xlim((0, L)) | |
plt.ylim((0, L)) | |
plt.colorbar(p) | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment