Skip to content

Instantly share code, notes, and snippets.

Show Gist options
  • Save imakecodes/d273b8835991ac310fa532854c6767fd to your computer and use it in GitHub Desktop.
Save imakecodes/d273b8835991ac310fa532854c6767fd to your computer and use it in GitHub Desktop.
Email classification example with Python, NLTK, ...
documents = [ dict(
email=open("conference/%d.txt" % n).read().strip(),
category='conference') for n in range(1,372) ]
documents.extend([ dict(
email=open("job/%d.txt" % n).read().strip(),
category='job') for n in range(1,275)])
documents.extend([ dict(
email=open("spam/%d.txt" % n).read().strip(),
category='spam') for n in range(1,799) ])
from email import message_from_string
from BeautifulSoup import BeautifulSoup as BS
from re import split
for n in range(len(documents)):
html = message_from_string(documents[n]['email']).get_payload()
while not isinstance(html, str): # Multipart problem
html = html[0].get_payload()
text = ' '.join(BS(html).findAll(text=True)) # Strip HTML
documents[n]['html'] = html
documents[n]['text'] = text
documents[n]['words'] = split('\W+', text) # Find words
import nltk
all_words = nltk.FreqDist(w.lower() for d in documents for w in d['words'])
word_features = all_words.keys()[:2000]
def document_features(document):
document_words = set(document['words'])
features = {}
for word in word_features:
features['contains(%s)' % word] = (word in document_words)
return features
import random
random.shuffle(documents)
featuresets = [(document_features(d), d['category']) for d in documents]
train_set, test_set = featuresets[721:], featuresets[:721]
classifier = nltk.NaiveBayesClassifier.train(train_set)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment