Last active
May 16, 2024 23:53
-
-
Save imanabu/d3844e5e1f75f80b70f4a9605590be0d to your computer and use it in GitHub Desktop.
Neptune Slow Query Parser and Most Offensive Query Discovery Jupyter Notebook Example
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# %% [markdown] | |
# # Neptune Slow Query Log Analysis | |
# %% | |
log_file_name = "slowquery.txt" | |
# %% | |
import json | |
def read_file_lines(filename): | |
lines = [] | |
with open(filename, 'r') as f: | |
for line in f: | |
# Remove trailing newline character | |
lines.append(line.rstrip()) | |
return lines | |
def parse(): | |
items = [] | |
for line in lines: | |
# print(line) | |
parts = line.split("\t") | |
# Extract the time (first part) | |
timestamp = parts[0] | |
# Extract the JSON component (second part) | |
try: | |
json_data = json.loads(parts[1]) | |
except json.JSONDecodeError: | |
# Handle potential errors if the JSON is malformed | |
print("Error: Invalid JSON format") | |
json_data = None | |
items.append({ "timestamp": timestamp, "data": json_data}) | |
return items | |
def extract_query(x): | |
query_stats = x["data"].get("queryStats") | |
if query_stats: | |
return query_stats.get("query") | |
pass | |
def extract_fingerprint(x): | |
query_stats = x["data"].get("queryStats") | |
if query_stats: | |
return query_stats.get("queryFingerprint") | |
pass | |
def extract_pattern(items, item): | |
p = extract_fingerprint(item) | |
count = 0 | |
for x in items: | |
q = extract_fingerprint(x) | |
if p == q: | |
count = count + 1 | |
return count | |
def high_mem(items): | |
highest = 0 | |
usage = 0 | |
highest_item = {} | |
for item in items: | |
mem = item["data"].get("memoryStats") | |
if mem is not None: | |
usage = mem.get("approximateUsedMemoryBytes") | |
if usage is not None and usage > highest: | |
highest = usage | |
highest_item = item | |
print("This is the offending query.") | |
print(f"It used up {highest/1024/1024} Mb") | |
print(extract_query(highest_item)) | |
total = len(items) | |
count = extract_pattern(items, highest_item) | |
print(f"{count} out of {total} has the same query pattern.") | |
# --- MAIN CODE -------------------------------------------------------- | |
lines = read_file_lines(log_file_name) | |
size = len(lines) | |
print(f"{size} long query lines loaded.") | |
items = parse() | |
high_mem(items) | |
# %% |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment