Created
July 9, 2024 15:39
-
-
Save indiejoseph/fe6abdfe2a0625f3185a1a573445da80 to your computer and use it in GitHub Desktop.
Whisper perplexity
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torchaudio | |
def eval(audio, text): | |
# convert audio to 16000 sample rate | |
audio = torchaudio.transforms.Resample(orig_freq=44100, new_freq=16000)(torch.tensor(audio).unsqueeze(0)).squeeze() | |
# process text | |
tokenized_seq = torch.tensor([processor.tokenizer(text, add_special_tokens=True).input_ids]).to(device) | |
decoder_input_ids = tokenized_seq[:, 1:] | |
decoder_input_ids_right_shifted = tokenized_seq[:, :-1] | |
# process audio | |
processed_in = processor(audio, sampling_rate=16000, return_tensors="pt").to(device) | |
with torch.no_grad(): | |
output = model.forward(input_features=processed_in.input_features, decoder_input_ids=decoder_input_ids_right_shifted) | |
# Convert logits to log-probabilities: | |
log_prob_all = torch.nn.functional.log_softmax(output.logits, dim=-1) | |
# Take probabilities for the ground-truth tokens: | |
log_prob = log_prob_all.take_along_dim(decoder_input_ids[..., None], dim=-1) | |
# Compute perplexity: | |
perplexity = torch.exp(-log_prob.mean()) | |
return perplexity.item() | |
eval(audio, text) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment