Last active
October 4, 2018 08:11
-
-
Save infinityfuture/edee3a06184250995fb9905bf2332a8c to your computer and use it in GitHub Desktop.
Use TextRank algorithm to generate summary
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
Reference: | |
http://www.hankcs.com/nlp/textrank-algorithm-to-extract-the-keywords-java-implementation.html | |
http://www.hankcs.com/nlp/textrank-algorithm-java-implementation-of-automatic-abstract.html | |
""" | |
from gensim.summarization.bm25 import get_bm25_weights | |
import numpy as np | |
corpus = [ | |
["算法", "大致", "分", "基本", "算法", "数据", "结构", "算法", "数论", "算法", "计算", "几何", "算法", "图", "算法", "动态", "规划", "数值", "分析", "加密", "算法", "排序", "算法", "检索", "算法", "随机", "化", "算法", "并行", "算法", "厄", "米", "变形", "模型", "随机", "森林", "算法"], | |
["算法", "宽泛", "分为", "三类"], | |
["有限", "确定性", "算法"], | |
["类", "算法", "有限", "一段", "时间", "终止"], | |
["可能", "花", "长", "时间", "执行", "指定", "任务"], | |
["一定", "时间", "终止"], | |
["类", "算法", "得出", "常", "取决", "输入", "值"], | |
["二"], | |
["有限", "非", "确定", "算法"], | |
["类", "算法", "有限", "时间", "终止"], | |
["一个", "定", "数值"], | |
["算法", "唯一", "确定"], | |
["三"], | |
["无限", "算法"], | |
["没有", "定义", "终止", "定义", "条件"], | |
["定义", "条件", "无法", "输入", "数据", "满足", "终止", "运行", "算法"], | |
["通常"], | |
["无限", "算法", "产生", "未", "确定", "定义", "终止", "条件"] | |
] | |
def new_ws(i, word_i, ws, corpus, similarity_matrix, d=0.85): | |
size = len(weight) | |
s = 0 | |
for j in range(size): | |
if j == i: continue | |
w_j_i = similarity_matrix[j][i] | |
weight_sum_j = np.sum(similarity_matrix[j]) | |
s += d * w_j_i / weight_sum_j * ws[j] | |
s = (1 - d) + s | |
return s | |
similarity_matrix = get_bm25_weights(corpus) | |
weight = np.ones(len(corpus)) | |
max_iter = 200 | |
tol = 1e-3 | |
for i in range(max_iter): | |
print(i) | |
new_weight = np.array([ | |
new_ws(i, word_i, weight, corpus, similarity_matrix) | |
for i, word_i in enumerate(corpus) | |
]) | |
if np.sum((weight - new_weight) ** 2) < tol: | |
break | |
weight = new_weight | |
print(sorted(list(zip(corpus, weight)), key=lambda x: x[1], reverse=True)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment