-
-
Save information-security/b1b747ee5b29cee1b2aeb0f406b427a7 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import pandas as pd | |
from keras.models import Sequential | |
from keras.layers import Dense, LSTM, Dropout, Conv2D, Reshape, TimeDistributed, Flatten, Conv1D,ConvLSTM2D, MaxPooling1D | |
from keras.layers.core import Dense, Activation, Dropout | |
from sklearn.preprocessing import MinMaxScaler | |
from sklearn.metrics import mean_squared_error | |
import tensorflow as tf | |
import matplotlib.pyplot as plt | |
config = tf.ConfigProto() | |
config.gpu_options.allow_growth=True | |
sess = tf.Session(config=config) | |
def create_dataset(signal_data, look_back=1): | |
dataX, dataY = [], [] | |
for i in range(len(signal_data) - look_back): | |
dataX.append(signal_data[i:(i + look_back), 0]) | |
dataY.append(signal_data[i + look_back, 0]) | |
return np.array(dataX), np.array(dataY) | |
forecast = 50 | |
look_back = 20 | |
#kospi.csv is https://docs.google.com/spreadsheets/d/13qyMDbl9EsBPE6asoXkH_73Y4QVGzaiUXyir94nN3VE/edit?usp=sharing | |
df = pd.read_csv('kospi.csv') | |
signal_data = df.Close.values.astype('float32') | |
total_data = df.Close.values.astype('float32') | |
signal_data = signal_data.reshape(len(df), 1) | |
scaler = MinMaxScaler(feature_range=(0, 1)) | |
signal_data = scaler.fit_transform(signal_data) | |
train_size = int(len(signal_data) * 0.80) | |
test_size = len(signal_data) - train_size - int(len(signal_data) * 0.05) | |
val_size = len(signal_data) - train_size - test_size | |
train = signal_data[0:train_size] | |
val = signal_data[train_size:train_size+val_size] | |
test = signal_data[train_size+val_size:len(signal_data)] | |
x_train, y_train = create_dataset(train, look_back) | |
x_val, y_val = create_dataset(val, look_back) | |
x_test, y_test = create_dataset(test, look_back) | |
x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1], 1)) | |
x_val = np.reshape(x_val, (x_val.shape[0], x_val.shape[1], 1)) | |
x_test = np.reshape(x_test, (x_test.shape[0], x_test.shape[1], 1)) | |
model = Sequential() | |
model.add(LSTM(128, input_shape=(None, 1),return_sequences=True)) | |
model.add(Dropout(0.3)) | |
model.add(LSTM(128, input_shape=(None, 1))) | |
model.add(Dropout(0.3)) | |
model.add(Dense(128)) | |
model.add(Dropout(0.3)) | |
model.add(Dense(1)) | |
model.compile(loss='mean_squared_error', optimizer='adam', metrics=['accuracy']) | |
model.summary() | |
hist = model.fit(x_train, y_train, epochs=20, batch_size=32, verbose=2, validation_data=(x_val, y_val)) | |
trainScore = model.evaluate(x_train, y_train, verbose=0) | |
model.reset_states() | |
print('Train Score: ', trainScore) | |
valScore = model.evaluate(x_val, y_val, verbose=0) | |
model.reset_states() | |
print('Validataion Score: ', valScore) | |
testScore = model.evaluate(x_test, y_test, verbose=0) | |
model.reset_states() | |
print('Test Score: ', testScore) | |
inputs = total_data[len(total_data) - forecast - look_back:] | |
inputs = scaler.transform(inputs) | |
X_test = [] | |
for i in range(look_back, inputs.shape[0]): | |
X_test.append(inputs[i - look_back:i]) | |
X_test = np.array(X_test) | |
predicted = model.predict(X_test) | |
#kospi.csv is https://docs.google.com/spreadsheets/d/13qyMDbl9EsBPE6asoXkH_73Y4QVGzaiUXyir94nN3VE/edit?usp=sharing |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment