Skip to content

Instantly share code, notes, and snippets.

@inhzus
Created April 30, 2019 03:25
Show Gist options
  • Save inhzus/5ec44e0aa69ba04926ceb8bf159bbc30 to your computer and use it in GitHub Desktop.
Save inhzus/5ec44e0aa69ba04926ceb8bf159bbc30 to your computer and use it in GitHub Desktop.
Canny edge dection
function output = my_edge(input_image)
mean_value = mean(mean(input_image));
[height, width] = size(input_image);
fft_mid_img = fftshift(fft2(input_image));
fft_ratio = 12;
a = round(height/fft_ratio):round((fft_ratio-1)*height/fft_ratio);
b = round(width/fft_ratio):round((fft_ratio-1)*width/fft_ratio);
% disp(a);
% disp(b);
fft_mid_img(round(height / 2), round(width / 2)) = 0;
input_image = real(ifft2(ifftshift(fft_mid_img)));
blurred = gauss_blur(gauss_blur(input_image));
% blurred = imbilatfilt(input_image);
% blurred = gauss_blur(medfilt2(input_image));
subplot(2, 2, 2); imshow(blurred);
[g, theta] = sobel(blurred);
edge = zeros(height, width);
for i = 2 : height - 1
for j = 2 : width - 1
if (...
(abs(theta(i, j)) == 90 &&...
g(i, j) >= g(i+1, j) &&...
g(i, j) >= g(i-1, j)) ||...
(theta(i, j) == 0 &&...
g(i, j) >= g(i, j + 1) &&...
g(i, j) >= g(i, j - 1)) ||...
(theta(i, j) == 45 &&...
g(i, j) >= g(i + 1, j + 1) &&...
g(i, j) >= g(i - 1, j - 1)) ||...
(theta(i, j) == -45 &&...
g(i, j) >= g(i + 1, j - 1) &&...
g(i, j) >= g(i - 1, j + 1))...
)
edge(i, j) = g(i, j);
else
edge(i, j) = 0;
end
end
end
% upper_thresh = otsu_threshold(input_image);
upper_thresh = 1.33 * mean_value;
lower_thresh = 0.66 * mean_value;
% lower_thresh = upper_thresh / 2;
disp(upper_thresh);
disp(lower_thresh);
% edge(edge > lower_thresh) = 1.0;
edge((lower_thresh < edge) & (edge < upper_thresh)) = 0.5;
edge(edge < lower_thresh) = 0;
edge(edge > upper_thresh) = 1.0;
edge = filter_low_thresh(edge);
subplot(2, 2, 3); imshow(edge);
output = edge;
function filter_ret = filter_low_thresh(filter_img)
[filter_height, filter_width] = size(filter_img);
filter_ret = zeros(filter_height, filter_width);
% filter_ret = filter_img;
fb = max(filter_height, filter_width) / 20;
fr = round(max(filter_height, filter_width) / 16);
for fi = 2:filter_height-1
for fj = 2:filter_width-1
if (filter_img(fi, fj) < 0.6 && filter_img(fi, fj) > 0.4)
filter_hr = max(1, fi-fr): min(filter_height, fi+fr);
filter_wr = max(1, fj-fr): min(filter_width, fj+fr);
% disp(filter_wr);
filter_area = filter_img(filter_hr, filter_wr);
filter_x = sum(sum(filter_area>0.4));
% filter_x(ceil(fb/2):filter_height-ceil(fb/2), ...
% ceil(fb/2):filter_width-ceil(fb/2)) = 0;
if (filter_x > 1)
% if (filter_x > 0.6)
filter_ret(fi, fj) =1;
end
elseif (filter_img(fi, fj) > 0.6)
filter_ret(fi, fj) = 1;
end
end
end
function threshold = otsu_threshold(otsu_img)
otsu_img = im2uint8(otsu_img) + 1;
hist = zeros(256, 1);
[otsu_height, otsu_width] = size(otsu_img);
for oi = 1:otsu_height
for oj = 1:otsu_width
hist(otsu_img(oi, oj)) = hist(otsu_img(oi, oj)) + 1;
end
end
weights = 0;
for oi = 1:256
weights = weights + hist(oi);
end
sum = 0.0;
tmpMax = 0.0;
threshold = 0;
background = 0;
foreground = 0;
for oi = 1:256
background = background + hist(oi);
if (background == 0)
continue
end
foreground = numel(otsu_img) - background;
if (foreground == 0)
continue
end
sum = sum + oi * hist(oi);
mean_back = sum / background;
mean_fore = (weights - sum) / foreground;
between = background * foreground * (mean_back - mean_fore) ^ 2;
if (between > tmpMax)
tmpMax = between;
threshold = oi;
end
end
threshold = double(threshold - 1) / 255;
function [sobel_g, sobel_theta] = sobel(sobel_img)
sobel_x = [-1 0 1; -2 0 2; -1 0 1];
sobel_y = [1 2 1; 0 0 0; -1 -2 -1];
x_ret = imfilter(sobel_img, sobel_x);
y_ret = imfilter(sobel_img, sobel_y);
sobel_g = sqrt(x_ret.^2 + y_ret.^2);
sobel_theta = atan(y_ret./x_ret) * 180 / pi;
sobel_theta = round(sobel_theta / 45) * 45;
sobel_theta(isnan(sobel_theta)) = 2;
function gauss_ret = gauss_blur(gauss_img)
filter_matrix = 1/159 * [
2 4 5 4 2;
4 9 12 9 4;
5 12 15 12 5;
4 9 12 9 4;
2 4 5 4 2];
gauss_ret = imfilter(gauss_img, filter_matrix);
%in this function, you should finish the edge detection utility.
%the input parameter is a matrix of a gray image
%the output parameter is a matrix contains the edge index using 0 and 1
%the entries with 1 in the matrix shows that point is on the edge of the
%image
%you can use different methods to complete the edge detection function
%the better the final result and the more methods you have used, you will get higher scores
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment