Created
June 12, 2022 12:01
-
-
Save innat/0ee2b6155d663aac2617fe596e1d8d49 to your computer and use it in GitHub Desktop.
Vectorized Implementation of MixUp Augmentation.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tensorflow as tf | |
from tensorflow.keras import layers | |
class MixUp(layers.Layer): | |
"""Original implementation: https://github.com/keras-team/keras-cv. | |
The original implementaiton provide more interface to apply mixup on | |
various CV related task, i.e. object detection etc. It also provides | |
many effective validation check. | |
Deried and modified for simpler usages: M.Innat. | |
""" | |
def __init__(self, alpha=0.2, seed=None, **kwargs): | |
super().__init__(**kwargs) | |
self.alpha = alpha | |
self.seed = seed | |
@staticmethod | |
def _sample_from_beta(alpha, beta, shape): | |
sample_alpha = tf.random.gamma(shape, 1.0, beta=alpha) | |
sample_beta = tf.random.gamma(shape, 1.0, beta=beta) | |
return sample_alpha / (sample_alpha + sample_beta) | |
def _mixup_samples(self, images): | |
batch_size = tf.shape(images)[0] | |
permutation_order = tf.random.shuffle(tf.range(0, batch_size), seed=self.seed) | |
lambda_sample = MixUp._sample_from_beta(self.alpha, self.alpha, (batch_size,)) | |
lambda_sample = tf.reshape(lambda_sample, [-1, 1, 1, 1]) | |
mixup_images = tf.gather(images, permutation_order) | |
images = lambda_sample * images + (1.0 - lambda_sample) * mixup_images | |
return images, tf.squeeze(lambda_sample), permutation_order | |
def _mixup_labels(self, labels, lambda_sample, permutation_order): | |
labels_for_mixup = tf.gather(labels, permutation_order) | |
lambda_sample = tf.reshape(lambda_sample, [-1, 1]) | |
labels = lambda_sample * labels + (1.0 - lambda_sample) * labels_for_mixup | |
return labels | |
def call(self, batch_inputs): | |
bs_images = tf.cast(batch_inputs[0], dtype=tf.float32) # ALL Image Samples | |
bs_labels = tf.cast(batch_inputs[1], dtype=tf.float32) # ALL Lable Samples | |
mixup_images, lambda_sample, permutation_order = self._mixup_samples(bs_images) | |
mixup_labels = self._mixup_labels(bs_labels, lambda_sample, permutation_order) | |
return [mixup_images, mixup_labels] | |
def get_config(self): | |
config = super().get_config() | |
config.update( | |
{ | |
"alpha": self.alpha, | |
"seed": self.seed, | |
} | |
) | |
return config |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment