Last active
November 10, 2023 08:24
-
-
Save innat/7115a15b2889d74fbc9692c3d5bac3e8 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
Reference | |
# https://github.com/fuenwang/PanoramaUtility | |
# https://github.com/fuenwang/Equirec2Perspec | |
# https://github.com/fuenwang/PanoramaUtility | |
# https://github.com/timy90022/Perspective-and-Equirectangular | |
""" | |
import os | |
import sys | |
import cv2 | |
import matplotlib.pyplot as plt | |
import numpy as np | |
def xyz2lonlat(xyz): | |
atan2 = np.arctan2 | |
asin = np.arcsin | |
norm = np.linalg.norm(xyz, axis=-1, keepdims=True) | |
xyz_norm = xyz / norm | |
x = xyz_norm[..., 0:1] | |
y = xyz_norm[..., 1:2] | |
z = xyz_norm[..., 2:] | |
lon = atan2(x, z) | |
lat = asin(y) | |
lst = [lon, lat] | |
out = np.concatenate(lst, axis=-1) | |
return out | |
def lonlat2XY(lonlat, shape): | |
X = (lonlat[..., 0:1] / (2 * np.pi) + 0.5) * (shape[1] - 1) | |
Y = (lonlat[..., 1:] / (np.pi) + 0.5) * (shape[0] - 1) | |
lst = [X, Y] | |
out = np.concatenate(lst, axis=-1) | |
return out | |
class Equirectangular: | |
def __init__(self, img_name): | |
self._img = cv2.imread(img_name)[:,:,::-1 ] | |
[self._height, self._width, _] = self._img.shape | |
def GetPerspective(self, FOV, THETA, PHI, height, width): | |
# | |
# THETA is left/right angle, PHI is up/down angle, both in degree | |
# | |
f = 0.5 * width * 1 / np.tan(0.5 * FOV / 180.0 * np.pi) | |
cx = (width - 1) / 2.0 | |
cy = (height - 1) / 2.0 | |
K = np.array([ | |
[f, 0, cx], | |
[0, f, cy], | |
[0, 0, 1], | |
], np.float32) | |
K_inv = np.linalg.inv(K) | |
x = np.arange(width) | |
y = np.arange(height) | |
x, y = np.meshgrid(x, y) | |
z = np.ones_like(x) | |
xyz = np.concatenate([x[..., None], y[..., None], z[..., None]], axis=-1) | |
xyz = xyz @ K_inv.T | |
y_axis = np.array([0.0, 1.0, 0.0], np.float32) | |
x_axis = np.array([1.0, 0.0, 0.0], np.float32) | |
R1, _ = cv2.Rodrigues(y_axis * np.radians(THETA)) | |
R2, _ = cv2.Rodrigues(np.dot(R1, x_axis) * np.radians(PHI)) | |
R = R2 @ R1 | |
xyz = xyz @ R.T | |
lonlat = xyz2lonlat(xyz) | |
XY = lonlat2XY(lonlat, shape=self._img.shape).astype(np.float32) | |
persp = cv2.remap(self._img, XY[..., 0], XY[..., 1], cv2.INTER_CUBIC, borderMode=cv2.BORDER_WRAP) | |
return persp | |
# an image with 360 degree view | |
equ = Equirectangular('/home/jupyter/working/base-image.JPG') | |
# # THETA is left/right angle, PHI is up/down angle, both in degree | |
# FOV unit is degree / zoom degree | |
# theta is z-axis angle(right direction is positive, left direction is negative) | |
# phi is y-axis angle(up direction positive, down direction negative) | |
# height and width is output image dimension | |
all_patches = [] | |
for phi_i in [0, 30, -50]: | |
for i in [0, 30, 90, 130, 180, 230, 280, 330]: | |
img = equ.GetPerspective( | |
FOV = 100, | |
THETA = i, | |
PHI = phi_i, # 0 (plain shot), 30 (upper shot), -50 (down shot) | |
height = 720, | |
width = 1080 | |
) | |
plt.figure(figsize=(10, 10)) | |
plt.imshow(img) | |
plt.title(i) | |
plt.savefig(f'{phi}{i}.png) | |
plt.show() | |
all_patches.append(img) | |
all_patches = np.concatenate([all_patches], axis=0) | |
all_patches.shape | |
plt.figure(figsize=(25,25)) | |
for i in range(all_patches.shape[0]): | |
plt.subplot(6, 4, i + 1) | |
plt.imshow(all_patches[i]) | |
plt.axis("off") | |
plt.tight_layout() | |
plt.savefig('a.png', dpi=100) | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment