Skip to content

Instantly share code, notes, and snippets.

@innat
Last active November 10, 2023 08:24
Show Gist options
  • Save innat/7115a15b2889d74fbc9692c3d5bac3e8 to your computer and use it in GitHub Desktop.
Save innat/7115a15b2889d74fbc9692c3d5bac3e8 to your computer and use it in GitHub Desktop.
"""
Reference
# https://github.com/fuenwang/PanoramaUtility
# https://github.com/fuenwang/Equirec2Perspec
# https://github.com/fuenwang/PanoramaUtility
# https://github.com/timy90022/Perspective-and-Equirectangular
"""
import os
import sys
import cv2
import matplotlib.pyplot as plt
import numpy as np
def xyz2lonlat(xyz):
atan2 = np.arctan2
asin = np.arcsin
norm = np.linalg.norm(xyz, axis=-1, keepdims=True)
xyz_norm = xyz / norm
x = xyz_norm[..., 0:1]
y = xyz_norm[..., 1:2]
z = xyz_norm[..., 2:]
lon = atan2(x, z)
lat = asin(y)
lst = [lon, lat]
out = np.concatenate(lst, axis=-1)
return out
def lonlat2XY(lonlat, shape):
X = (lonlat[..., 0:1] / (2 * np.pi) + 0.5) * (shape[1] - 1)
Y = (lonlat[..., 1:] / (np.pi) + 0.5) * (shape[0] - 1)
lst = [X, Y]
out = np.concatenate(lst, axis=-1)
return out
class Equirectangular:
def __init__(self, img_name):
self._img = cv2.imread(img_name)[:,:,::-1 ]
[self._height, self._width, _] = self._img.shape
def GetPerspective(self, FOV, THETA, PHI, height, width):
#
# THETA is left/right angle, PHI is up/down angle, both in degree
#
f = 0.5 * width * 1 / np.tan(0.5 * FOV / 180.0 * np.pi)
cx = (width - 1) / 2.0
cy = (height - 1) / 2.0
K = np.array([
[f, 0, cx],
[0, f, cy],
[0, 0, 1],
], np.float32)
K_inv = np.linalg.inv(K)
x = np.arange(width)
y = np.arange(height)
x, y = np.meshgrid(x, y)
z = np.ones_like(x)
xyz = np.concatenate([x[..., None], y[..., None], z[..., None]], axis=-1)
xyz = xyz @ K_inv.T
y_axis = np.array([0.0, 1.0, 0.0], np.float32)
x_axis = np.array([1.0, 0.0, 0.0], np.float32)
R1, _ = cv2.Rodrigues(y_axis * np.radians(THETA))
R2, _ = cv2.Rodrigues(np.dot(R1, x_axis) * np.radians(PHI))
R = R2 @ R1
xyz = xyz @ R.T
lonlat = xyz2lonlat(xyz)
XY = lonlat2XY(lonlat, shape=self._img.shape).astype(np.float32)
persp = cv2.remap(self._img, XY[..., 0], XY[..., 1], cv2.INTER_CUBIC, borderMode=cv2.BORDER_WRAP)
return persp
# an image with 360 degree view
equ = Equirectangular('/home/jupyter/working/base-image.JPG')
# # THETA is left/right angle, PHI is up/down angle, both in degree
# FOV unit is degree / zoom degree
# theta is z-axis angle(right direction is positive, left direction is negative)
# phi is y-axis angle(up direction positive, down direction negative)
# height and width is output image dimension
all_patches = []
for phi_i in [0, 30, -50]:
for i in [0, 30, 90, 130, 180, 230, 280, 330]:
img = equ.GetPerspective(
FOV = 100,
THETA = i,
PHI = phi_i, # 0 (plain shot), 30 (upper shot), -50 (down shot)
height = 720,
width = 1080
)
plt.figure(figsize=(10, 10))
plt.imshow(img)
plt.title(i)
plt.savefig(f'{phi}{i}.png)
plt.show()
all_patches.append(img)
all_patches = np.concatenate([all_patches], axis=0)
all_patches.shape
plt.figure(figsize=(25,25))
for i in range(all_patches.shape[0]):
plt.subplot(6, 4, i + 1)
plt.imshow(all_patches[i])
plt.axis("off")
plt.tight_layout()
plt.savefig('a.png', dpi=100)
plt.show()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment