Skip to content

Instantly share code, notes, and snippets.

@innat
Created February 21, 2023 13:07
Show Gist options
  • Save innat/88ac2a9484ab6652c6334f11c7ea6b64 to your computer and use it in GitHub Desktop.
Save innat/88ac2a9484ab6652c6334f11c7ea6b64 to your computer and use it in GitHub Desktop.
CLAHE implemented in TensorFlow 2
```
# original repo: https://github.com/isears/tf_clahe
# check https://github.com/isears/tf_clahe/issues/1#issuecomment-1356676495
!pip install -q --no-deps /kaggle/input/tfpackages/tf_clahe-0.1.0-py3-none-any.whl
```
import tf_clahe
class CLAHE(keras.layers.Layer):
def __init__(
self, clip_limit=4.0, tile_grid_size=(8, 8), gpu_optimized=False, **kwargs
):
super().__init__(**kwargs)
self.clip_limit = clip_limit
self.tile_grid_size = tile_grid_size
self.gpu_optimized = gpu_optimized
@tf.function(experimental_compile=True)
def clahe(self, img):
return tf_clahe.clahe(
img,
clip_limit=self.clip_limit,
tile_grid_size=self.tile_grid_size,
gpu_optimized=self.gpu_optimized
)
def call(self, inputs, training=True):
if training:
return self.clahe(inputs)
return inputs
def get_config(self):
config = super().get_config()
config.update(
{
"clip_limit": self.clip_limit,
'tile_grid_size': self.tile_grid_size,
'gpu_optimized': self.gpu_optimized
}
)
return config
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment