Created
November 12, 2021 22:43
-
-
Save innat/9c4a6a7a1cd152f0d67cb4fe5e59926c to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tensorflow as tf | |
from tensorflow.keras import layers | |
from tensorflow import keras | |
print('TensorFlow', tf.__version__) | |
class ResidualBlock(layers.Layer): | |
def __init__(self, block_type=None, n_filters=None): | |
super(ResidualBlock, self).__init__() | |
self.n_filters = n_filters | |
if block_type == 'identity': | |
self.strides = 1 | |
elif block_type == 'conv': | |
self.strides = 2 | |
self.conv_shorcut = layers.Conv2D(filters=self.n_filters, | |
kernel_size=1, | |
padding='same', | |
strides=self.strides, | |
kernel_initializer='he_normal') | |
self.bn_shortcut = layers.BatchNormalization(momentum=0.9) | |
self.conv_1 = layers.Conv2D(filters=self.n_filters, | |
kernel_size=3, | |
padding='same', | |
strides=self.strides, | |
kernel_initializer='he_normal') | |
self.conv_2 = layers.Conv2D(filters=self.n_filters, | |
kernel_size=3, | |
padding='same', | |
kernel_initializer='he_normal') | |
self.bn_1 = layers.BatchNormalization(momentum=0.9) | |
self.bn_2 = layers.BatchNormalization(momentum=0.9) | |
def call(self, inputs, training=False): | |
shortcut = inputs | |
if self.strides == 2: | |
shortcut = self.conv_shorcut(inputs) | |
shortcut = self.bn_shortcut(shortcut) | |
x = self.conv_1(inputs) | |
x = tf.nn.relu(self.bn_1(x)) | |
x = self.conv_2(x) | |
x = self.bn_2(x) | |
x = tf.add(shortcut, x) | |
return tf.nn.relu(x) | |
class ResNet34(tf.keras.Model): | |
def __init__(self, include_top=True, n_classes=1000): | |
super(ResNet34, self).__init__() | |
self.n_classes = n_classes | |
self.include_top = include_top | |
self.conv_1 = layers.Conv2D(filters=64, | |
kernel_size=7, | |
padding='same', | |
strides=2, | |
kernel_initializer='he_normal') | |
self.bn_1 = layers.BatchNormalization(momentum=0.9) | |
self.zero_pad_1 = layers.ZeroPadding2D(padding=(3, 3)) | |
self.bn_2 = layers.BatchNormalization(momentum=0.9) | |
self.zero_pad_2 = layers.ZeroPadding2D(padding=(1, 1)) | |
self.maxpool = layers.MaxPool2D(3, 2, padding='same') | |
self.residual_blocks = keras.Sequential() | |
for n_filters, reps, downscale in zip([64, 128, 256, 512], | |
[3, 4, 6, 3], | |
[False, True, True, True]): | |
for i in range(reps): | |
if i == 0 and downscale: | |
self.residual_blocks.add(ResidualBlock(block_type='conv', n_filters=n_filters)) | |
else: | |
self.residual_blocks.add(ResidualBlock(block_type='identity', n_filters=n_filters)) | |
self.gap = layers.GlobalAveragePooling2D() | |
self.fc =layers.Dense(units=self.n_classes) | |
def call(self, inputs, training=False): | |
x = self.bn_1(inputs) | |
x = self.zero_pad_1(x) | |
x = self.conv_1(x) | |
x = tf.nn.relu(self.bn_2(x)) | |
x = self.zero_pad_2(x) | |
x = self.maxpool(x) | |
x = self.residual_blocks(x) | |
if self.include_top: | |
x = self.gap(x) | |
x = self.fc(x) | |
return x | |
def build_graph(self): | |
x = tf.keras.Input(shape=(224, 224, 3)) | |
return tf.keras.Model(inputs=[x], outputs=self.call(x)) | |
model = ResNet34() | |
model.build((1, 224, 224, 3)) | |
model.build_graph().summary(line_length=120, expand_nested=True) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment