Last active
February 11, 2023 22:18
-
-
Save innat/ba6740293e7b7b227829790686f2119c to your computer and use it in GitHub Desktop.
Gradient Accumulation with Custom fit in TF.Keras. MNIST example.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tensorflow as tf | |
# credit: https://stackoverflow.com/a/66524901/9215780 | |
class CustomTrainStep(tf.keras.Model): | |
def __init__(self, n_gradients, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
self.n_gradients = tf.constant(n_gradients, dtype=tf.int32) | |
self.n_acum_step = tf.Variable(0, dtype=tf.int32, trainable=False) | |
self.gradient_accumulation = [tf.Variable(tf.zeros_like(v, dtype=tf.float32), | |
trainable=False) for v in self.trainable_variables] | |
def train_step(self, data): | |
self.n_acum_step.assign_add(1) | |
x, y = data | |
# Gradient Tape | |
with tf.GradientTape() as tape: | |
y_pred = self(x, training=True) | |
loss = self.compiled_loss(y, y_pred, regularization_losses=self.losses) | |
# Calculate batch gradients | |
gradients = tape.gradient(loss, self.trainable_variables) | |
# Accumulate batch gradients | |
for i in range(len(self.gradient_accumulation)): | |
self.gradient_accumulation[i].assign_add(gradients[i]) | |
# If n_acum_step reach the n_gradients then we apply accumulated gradients to update the variables otherwise do nothing | |
tf.cond(tf.equal(self.n_acum_step, self.n_gradients), self.apply_accu_gradients, lambda: None) | |
# update metrics | |
self.compiled_metrics.update_state(y, y_pred) | |
return {m.name: m.result() for m in self.metrics} | |
def apply_accu_gradients(self): | |
# apply accumulated gradients | |
self.optimizer.apply_gradients(zip(self.gradient_accumulation, self.trainable_variables)) | |
# reset | |
self.n_acum_step.assign(0) | |
for i in range(len(self.gradient_accumulation)): | |
self.gradient_accumulation[i].assign(tf.zeros_like(self.trainable_variables[i], dtype=tf.float32)) | |
# Model | |
input = tf.keras.Input(shape=(28, 28)) | |
base_maps = tf.keras.layers.Flatten(input_shape=(28, 28))(input) | |
base_maps = tf.keras.layers.Dense(128, activation='relu')(base_maps) | |
base_maps = tf.keras.layers.Dense(units=10, activation='softmax', name='primary')(base_maps) | |
custom_model = CustomTrainStep(n_gradients=10, inputs=[input], outputs=[base_maps]) | |
# bind all | |
custom_model.compile( | |
loss = tf.keras.losses.CategoricalCrossentropy(), | |
metrics = ['accuracy'], | |
optimizer = tf.keras.optimizers.Adam(learning_rate=1e-3)) | |
# data | |
(x_train, y_train), (_, _) = tf.keras.datasets.mnist.load_data() | |
x_train = tf.divide(x_train, 255) | |
y_train = tf.one_hot(y_train , depth=10) | |
# customized fit | |
custom_model.fit(x_train, y_train, batch_size=6, epochs=3, verbose = 1) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
For mult-gpu cases, overriding
train_step
, there is some known issue. Track: https://github.com/keras-team/keras/issues/17429