Last active
January 9, 2019 09:44
-
-
Save inoryy/de233ac13ecb97484e950c48d87aa688 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tensorflow as tf | |
class TfCategorical: | |
def __init__(self, logits): | |
self.logits = logits | |
self.probs = tf.nn.softmax(logits) | |
def sample(self): | |
u = tf.random_uniform(tf.shape(self.logits)) | |
return tf.argmax(self.logits - tf.log(-tf.log(u)), axis=-1) | |
def masked_sample(self, mask=None): | |
if not mask: | |
return self.sample() | |
u = tf.random_uniform(tf.shape(self.logits)) * mask + 1e-12 | |
return tf.argmax(self.logits - tf.log(-tf.log(u)), axis=-1) | |
def entropy(self): | |
return tf_cross_entropy(self.logits, self.probs) | |
def logli(self, indices): | |
return -self.neglogli(indices) | |
def kl_div(self, other): | |
return tf_cross_entropy(other.logits, self.probs) - tf_cross_entropy(self.logits, self.probs) | |
def neglogli(self, actions): | |
return tf.nn.sparse_softmax_cross_entropy_with_logits(logits=self.logits, labels=actions) | |
class TfMultiCategorical: | |
def __init__(self, logits): | |
self.dists = [TfCategorical(l) for l in logits] | |
def sample(self): | |
return [d.sample() for d in self.dists] | |
def masked_sample(self, masks): | |
return [d.masked_sample(m) for d, m in zip(self.dists, masks)] | |
def entropy(self): | |
return sum([d.entropy() for d in self.dists]) | |
def logli(self, indices): | |
return -self.neglogli(indices) | |
def kl_div(self, others): | |
return sum([d.kl_div(o) for d, o in zip(self.dists, others)]) | |
def neglogli(self, actions): | |
return sum([d.neglogli(a) for d, a in zip(self.dists, actions)]) | |
def tf_cross_entropy(logits, probs): | |
""" | |
Alias function to reduce text clutter | |
""" | |
tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=probs) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment