Created
November 18, 2015 15:22
-
-
Save inoryy/f393d8b3b38eec662075 to your computer and use it in GitHub Desktop.
Extracted & tweaked code from https://www.dataquest.io/mission/74/getting-started-with-kaggle/
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pandas | |
from sklearn.linear_model import LogisticRegression | |
from sklearn import cross_validation | |
def sanitize(dataset): | |
dataset["Age"] = dataset["Age"].fillna(dataset["Age"].median()) | |
dataset["Fare"] = dataset["Fare"].fillna(dataset["Fare"].median()) | |
dataset.loc[dataset["Sex"] == "male", "Sex"] = 0 | |
dataset.loc[dataset["Sex"] == "female", "Sex"] = 1 | |
dataset["Embarked"] = dataset["Embarked"].fillna("S") | |
dataset.loc[dataset["Embarked"] == "S", "Embarked"] = 0 | |
dataset.loc[dataset["Embarked"] == "C", "Embarked"] = 1 | |
dataset.loc[dataset["Embarked"] == "Q", "Embarked"] = 2 | |
return dataset | |
if __name__ == '__main__': | |
titanic = sanitize(pandas.read_csv("train.csv")) | |
titanic_test = sanitize(pandas.read_csv("test.csv")) | |
predictors = ["Pclass", "Sex", "Age", "SibSp", "Parch", "Fare", "Embarked"] | |
alg = LogisticRegression(random_state=1) | |
alg.fit(titanic[predictors], titanic["Survived"]) | |
predictions = alg.predict(titanic_test[predictors]) | |
scores = cross_validation.cross_val_score(alg, titanic[predictors], titanic["Survived"], cv=3) | |
print(scores.mean()) | |
submission = pandas.DataFrame({"PassengerId": titanic_test["PassengerId"], "Survived": predictions }) | |
submission.to_csv("kaggle.csv", index=False) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Extracted & tweaked code from Getting started with Kaggle tutorial for the Titanic Kaggle challenge.