Skip to content

Instantly share code, notes, and snippets.

@instagibbs
Created September 12, 2024 16:12
Show Gist options
  • Save instagibbs/058f51587074187cb78f5f9b9327442e to your computer and use it in GitHub Desktop.
Save instagibbs/058f51587074187cb78f5f9b9327442e to your computer and use it in GitHub Desktop.
| ns/op | op/s | err% | total | benchmark
|--------------------:|--------------------:|--------:|----------:|:----------
| 93,062,810.00 | 10.75 | 0.3% | 1.02 | `LinearizeOptimallyExample00`
| 97,757,782.00 | 10.23 | 10.0% | 1.03 | :wavy_dash: `LinearizeOptimallyExample01` (Unstable with ~1.0 iters. Increase `minEpochIterations` to e.g. 10)
| 72,062,906.00 | 13.88 | 18.7% | 1.39 | :wavy_dash: `LinearizeOptimallyExample02` (Unstable with ~1.9 iters. Increase `minEpochIterations` to e.g. 19)
| 70,236,537.00 | 14.24 | 8.2% | 0.96 | :wavy_dash: `LinearizeOptimallyExample03` (Unstable with ~1.3 iters. Increase `minEpochIterations` to e.g. 13)
| 24,690,481.40 | 40.50 | 13.4% | 1.07 | :wavy_dash: `LinearizeOptimallyExample04` (Unstable with ~4.2 iters. Increase `minEpochIterations` to e.g. 42)
| 31,282,472.67 | 31.97 | 16.3% | 1.06 | :wavy_dash: `LinearizeOptimallyExample05` (Unstable with ~3.1 iters. Increase `minEpochIterations` to e.g. 31)
| 79,498,084.00 | 12.58 | 26.3% | 0.85 | :wavy_dash: `LinearizeOptimallyExample06` (Unstable with ~1.0 iters. Increase `minEpochIterations` to e.g. 10)
| 42,281,296.33 | 23.65 | 16.4% | 1.06 | :wavy_dash: `LinearizeOptimallyExample07` (Unstable with ~2.2 iters. Increase `minEpochIterations` to e.g. 22)
| 31,013,894.67 | 32.24 | 17.4% | 1.15 | :wavy_dash: `LinearizeOptimallyExample08` (Unstable with ~3.1 iters. Increase `minEpochIterations` to e.g. 31)
| 41,795,125.50 | 23.93 | 32.5% | 0.93 | :wavy_dash: `LinearizeOptimallyExample09` (Unstable with ~2.2 iters. Increase `minEpochIterations` to e.g. 22)
| 12,531,017.40 | 79.80 | 10.9% | 1.02 | :wavy_dash: `LinearizeOptimallyExample10` (Unstable with ~6.8 iters. Increase `minEpochIterations` to e.g. 68)
| ns/op | op/s | err% | total | benchmark
|--------------------:|--------------------:|--------:|----------:|:----------
| 83,131,659.00 | 12.03 | 0.8% | 0.91 | `LinearizeOptimallyExample00`
| 102,264,853.00 | 9.78 | 12.3% | 1.08 | :wavy_dash: `LinearizeOptimallyExample01` (Unstable with ~1.0 iters. Increase `minEpochIterations` to e.g. 10)
| 53,077,595.00 | 18.84 | 12.4% | 1.14 | :wavy_dash: `LinearizeOptimallyExample02` (Unstable with ~1.8 iters. Increase `minEpochIterations` to e.g. 18)
| 70,513,076.00 | 14.18 | 9.0% | 0.91 | :wavy_dash: `LinearizeOptimallyExample03` (Unstable with ~1.2 iters. Increase `minEpochIterations` to e.g. 12)
| 23,838,039.00 | 41.95 | 11.3% | 1.13 | :wavy_dash: `LinearizeOptimallyExample04` (Unstable with ~4.5 iters. Increase `minEpochIterations` to e.g. 45)
| 24,624,085.75 | 40.61 | 9.2% | 1.09 | :wavy_dash: `LinearizeOptimallyExample05` (Unstable with ~4.3 iters. Increase `minEpochIterations` to e.g. 43)
| 80,944,882.00 | 12.35 | 12.7% | 0.94 | :wavy_dash: `LinearizeOptimallyExample06` (Unstable with ~1.1 iters. Increase `minEpochIterations` to e.g. 11)
| 41,995,522.50 | 23.81 | 14.9% | 1.17 | :wavy_dash: `LinearizeOptimallyExample07` (Unstable with ~2.4 iters. Increase `minEpochIterations` to e.g. 24)
| 36,078,460.00 | 27.72 | 6.9% | 1.20 | :wavy_dash: `LinearizeOptimallyExample08` (Unstable with ~2.9 iters. Increase `minEpochIterations` to e.g. 29)
| 45,873,255.50 | 21.80 | 32.9% | 0.99 | :wavy_dash: `LinearizeOptimallyExample09` (Unstable with ~2.0 iters. Increase `minEpochIterations` to e.g. 20)
| 18,514,051.60 | 54.01 | 15.2% | 1.15 | :wavy_dash: `LinearizeOptimallyExample10` (Unstable with ~5.8 iters. Increase `minEpochIterations` to e.g. 58)
| ns/op | op/s | err% | total | benchmark
|--------------------:|--------------------:|--------:|----------:|:----------
| 2,033,020.81 | 491.88 | 0.6% | 1.09 | `LinearizeOptimallyExample00`
| 5,641,359.62 | 177.26 | 1.5% | 1.08 | `LinearizeOptimallyExample01`
| 1,006,426.37 | 993.61 | 2.0% | 1.09 | `LinearizeOptimallyExample02`
| 2,520,309.32 | 396.78 | 2.1% | 1.09 | `LinearizeOptimallyExample03`
| 31,632.42 | 31,613.14 | 0.2% | 1.10 | `LinearizeOptimallyExample04`
| 414,828.67 | 2,410.63 | 0.2% | 1.10 | `LinearizeOptimallyExample05`
| 1,318,213.85 | 758.60 | 2.3% | 1.08 | `LinearizeOptimallyExample06`
| 548,193.64 | 1,824.17 | 0.8% | 1.11 | `LinearizeOptimallyExample07`
| 1,056,660.56 | 946.38 | 0.6% | 1.10 | `LinearizeOptimallyExample08`
| 437,563.06 | 2,285.38 | 2.3% | 1.12 | `LinearizeOptimallyExample09`
| 78,266.62 | 12,776.84 | 1.5% | 1.06 | `LinearizeOptimallyExample10`
| 36,687,711.67 | 27.26 | 1.1% | 1.04 | `LinearizeOptimallyExample11`
| 24,898,711.75 | 40.16 | 0.2% | 1.10 | `LinearizeOptimallyExample12`
| 19,807,157.00 | 50.49 | 9.1% | 1.08 | :wavy_dash: `LinearizeOptimallyExample13` (Unstable with ~4.9 iters. Increase `minEpochIterations` to e.g. 49)
| 29,993,562.25 | 33.34 | 2.8% | 1.10 | `LinearizeOptimallyExample14`
| ns/op | op/s | err% | total | benchmark
|--------------------:|--------------------:|--------:|----------:|:----------
| 72,863.64 | 13,724.27 | 0.3% | 1.06 | `LinearizeOptimallyExample00`
| 111,706.98 | 8,951.99 | 1.8% | 1.12 | `LinearizeOptimallyExample01`
| 58,809.92 | 17,003.94 | 0.5% | 1.10 | `LinearizeOptimallyExample02`
| 63,782.58 | 15,678.26 | 0.7% | 1.06 | `LinearizeOptimallyExample03`
| 2,748.97 | 363,772.30 | 0.1% | 1.11 | `LinearizeOptimallyExample04`
| 18,182.07 | 54,999.25 | 1.8% | 1.10 | `LinearizeOptimallyExample05`
| 41,465.16 | 24,116.63 | 0.8% | 1.08 | `LinearizeOptimallyExample06`
| 11,845.18 | 84,422.56 | 2.2% | 1.12 | `LinearizeOptimallyExample07`
| 77,383.68 | 12,922.62 | 0.9% | 1.08 | `LinearizeOptimallyExample08`
| 15,099.33 | 66,228.12 | 0.2% | 1.10 | `LinearizeOptimallyExample09`
| 12,999.70 | 76,924.87 | 0.3% | 1.10 | `LinearizeOptimallyExample10`
| 371,822,889.00 | 2.69 | 0.3% | 4.10 | `LinearizeOptimallyExample11`
| 674,097.28 | 1,483.47 | 0.3% | 1.05 | `LinearizeOptimallyExample12`
| 65,709.70 | 15,218.45 | 0.2% | 1.06 | `LinearizeOptimallyExample13`
| 446,958.62 | 2,237.34 | 1.5% | 1.11 | `LinearizeOptimallyExample14`
| 20,754,020.00 | 48.18 | 0.1% | 1.08 | `LinearizeOptimallyExample15`
| 11,195,392.11 | 89.32 | 0.4% | 1.09 | `LinearizeOptimallyExample16`
| 13,646,462.57 | 73.28 | 0.2% | 1.12 | `LinearizeOptimallyExample17`
| 13,864,085.62 | 72.13 | 0.2% | 1.14 | `LinearizeOptimallyExample18`
| 16,312,884.17 | 61.30 | 2.0% | 1.11 | `LinearizeOptimallyExample19`
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment