-
-
Save insujeon/58e29f717d0792c63c5fd12150785781 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch.optim as optim | |
import torchvision | |
from torchvision import datasets, transforms | |
import math | |
import numpy as np | |
# Hardcoded variables for hyperfan init | |
hardcoded_input_size = 3 | |
hardcoded_n_classes = 10 | |
hardcoded_hyperfanin = [hardcoded_input_size]*hardcoded_input_size + [96]*96*4 + [192]*(192*8 + 2*hardcoded_n_classes) | |
hardcoded_hyperfanout = [96]*(hardcoded_input_size + 96*2) + [192]*(192*9) + [hardcoded_n_classes]*2*hardcoded_n_classes | |
hardcoded_receptive = lambda i: 9 if i < hardcoded_input_size + 192*8 else 1 | |
def hyperfaninWi_init(i): | |
def hyperfanin_init(Wi): | |
fan_out, fan_in = Wi.size(0), Wi.size(1) | |
bound = math.sqrt(3*2 / (fan_in * hardcoded_hyperfanin[i]) / hardcoded_receptive(i)) | |
Wi.uniform_(-bound, bound) | |
return Wi | |
return hyperfanin_init | |
def hyperfanoutWi_init(i): | |
def hyperfanout_init(Wi): | |
fan_out, fan_in = Wi.size(0), Wi.size(1) | |
bound = math.sqrt(3*2 / (fan_in * hardcoded_hyperfanout[i]) / hardcoded_receptive(i)) | |
Wi.uniform_(-bound, bound) | |
return Wi | |
return hyperfanout_init | |
def fanin_uniform(W): | |
fan_out, fan_in = W.size(0), W.size(1) | |
bound = math.sqrt(3*2 / fan_in) | |
W.uniform_(-bound, bound) | |
return W | |
def embed_uniform(e): | |
bound = math.sqrt(3) | |
e.uniform_(-bound, bound) | |
return e | |
# Adapted from https://github.com/StefOe/all-conv-pytorch/blob/master/allconv.py | |
class AllConvNet(nn.Module): | |
def __init__(self, input_size, n_classes): | |
super(AllConvNet, self).__init__() | |
self.input_size = input_size | |
self.n_classes = n_classes | |
def forward(self, x): | |
x_drop = F.dropout(x, .2) | |
conv1_out = F.relu(F.conv2d(x_drop, self.conv1_weight, self.conv1_bias, padding=1)) | |
conv2_out = F.relu(F.conv2d(conv1_out, self.conv2_weight, self.conv2_bias, padding=1)) | |
conv3_out = F.relu(F.conv2d(conv2_out, self.conv3_weight, self.conv3_bias, padding=1, stride=2)) | |
conv3_out_drop = F.dropout(conv3_out, .5) | |
conv4_out = F.relu(F.conv2d(conv3_out_drop, self.conv4_weight, self.conv4_bias, padding=1)) | |
conv5_out = F.relu(F.conv2d(conv4_out, self.conv5_weight, self.conv5_bias, padding=1)) | |
conv6_out = F.relu(F.conv2d(conv5_out, self.conv6_weight, self.conv6_bias, padding=1, stride=2)) | |
conv6_out_drop = F.dropout(conv6_out, .5) | |
conv7_out = F.relu(F.conv2d(conv6_out_drop, self.conv7_weight, self.conv7_bias, padding=1)) | |
conv8_out = F.relu(F.conv2d(conv7_out, self.conv8_weight, self.conv8_bias)) | |
class_out = F.relu(F.conv2d(conv8_out, self.class_conv_weight, self.class_conv_bias)) | |
pool_out = F.adaptive_avg_pool2d(class_out, 1) | |
pool_out.squeeze_(-1) | |
pool_out.squeeze_(-1) | |
return pool_out | |
class HyperNN(AllConvNet): | |
def __init__(self, input_size, n_classes, embed_size, embedW_init_scheme, | |
hyperWi_init_scheme, hyperWout_init_scheme, device): | |
super().__init__(input_size, n_classes) | |
# Initialize the fixed parameters | |
self.num_kernels = input_size + 2*n_classes + 1920 # 96*2 + 192 + (192*2)*4 | |
self.weight_embeddings = embedW_init_scheme(torch.zeros(self.num_kernels, embed_size).to(device)) | |
# Initialize the trainable weight parameters | |
Wi = torch.zeros(self.num_kernels, embed_size, embed_size) | |
for i in range(self.num_kernels): | |
Wi[i] = hyperWi_init_scheme(i)(Wi[i]) | |
Bi = torch.zeros(self.num_kernels, embed_size) | |
Wout = hyperWout_init_scheme(torch.zeros(96*9, embed_size)) | |
Bout = torch.zeros(96*9) | |
# Register the trainable weight parameters | |
self.Wi = nn.Parameter(Wi) | |
self.Bi = nn.Parameter(Bi) | |
self.Wout = nn.Parameter(Wout) | |
self.Bout = nn.Parameter(Bout) | |
# Initialize and register the trainable bias parameters | |
self.conv1_bias = nn.Parameter(torch.zeros(96)) | |
self.conv2_bias = nn.Parameter(torch.zeros(96)) | |
self.conv3_bias = nn.Parameter(torch.zeros(96)) | |
self.conv4_bias = nn.Parameter(torch.zeros(192)) | |
self.conv5_bias = nn.Parameter(torch.zeros(192)) | |
self.conv6_bias = nn.Parameter(torch.zeros(192)) | |
self.conv7_bias = nn.Parameter(torch.zeros(192)) | |
self.conv8_bias = nn.Parameter(torch.zeros(192)) | |
self.class_conv_bias = nn.Parameter(torch.zeros(n_classes)) | |
def forward(self, x): | |
# Generate main weights from HyperNet's parameters | |
idx = 0; jump = self.input_size | |
self.conv1_weight = ((self.Wout @ \ | |
(self.Wi[idx:idx+jump] @ self.weight_embeddings[idx:idx+jump].unsqueeze(2) + \ | |
self.Bi[idx:idx+jump].unsqueeze(2))).squeeze(2) \ | |
+ self.Bout.unsqueeze(0)).view(96, self.input_size, 3, 3) | |
idx += jump; jump = 96 | |
self.conv2_weight = ((self.Wout @ \ | |
(self.Wi[idx:idx+jump] @ self.weight_embeddings[idx:idx+jump].unsqueeze(2) + \ | |
self.Bi[idx:idx+jump].unsqueeze(2))).squeeze(2) \ | |
+ self.Bout.unsqueeze(0)).view(96, 96, 3, 3) | |
idx += jump; | |
self.conv3_weight = ((self.Wout @ \ | |
(self.Wi[idx:idx+jump] @ self.weight_embeddings[idx:idx+jump].unsqueeze(2) + \ | |
self.Bi[idx:idx+jump].unsqueeze(2))).squeeze(2) \ | |
+ self.Bout.unsqueeze(0)).view(96, 96, 3, 3) | |
idx += jump; jump = 192 | |
self.conv4_weight = ((self.Wout @ \ | |
(self.Wi[idx:idx+jump] @ self.weight_embeddings[idx:idx+jump].unsqueeze(2) + \ | |
self.Bi[idx:idx+jump].unsqueeze(2))).squeeze(2) \ | |
+ self.Bout.unsqueeze(0)).view(192, 96, 3, 3) | |
idx += jump; jump = 192*2 | |
self.conv5_weight = ((self.Wout @ \ | |
(self.Wi[idx:idx+jump] @ self.weight_embeddings[idx:idx+jump].unsqueeze(2) + \ | |
self.Bi[idx:idx+jump].unsqueeze(2))).squeeze(2) \ | |
+ self.Bout.unsqueeze(0)).view(192, 192, 3, 3) | |
idx += jump; | |
self.conv6_weight = ((self.Wout @ \ | |
(self.Wi[idx:idx+jump] @ self.weight_embeddings[idx:idx+jump].unsqueeze(2) + \ | |
self.Bi[idx:idx+jump].unsqueeze(2))).squeeze(2) \ | |
+ self.Bout.unsqueeze(0)).view(192, 192, 3, 3) | |
idx += jump; | |
self.conv7_weight = ((self.Wout @ \ | |
(self.Wi[idx:idx+jump] @ self.weight_embeddings[idx:idx+jump].unsqueeze(2) + \ | |
self.Bi[idx:idx+jump].unsqueeze(2))).squeeze(2) \ | |
+ self.Bout.unsqueeze(0)).view(192, 192, 3, 3) | |
idx += jump; | |
self.conv8_weight = ((self.Wout @ \ | |
(self.Wi[idx:idx+jump] @ self.weight_embeddings[idx:idx+jump].unsqueeze(2) + \ | |
self.Bi[idx:idx+jump].unsqueeze(2))).squeeze(2) \ | |
+ self.Bout.unsqueeze(0)).view(192, 192, 3, 3)[:, :, :1, :1] | |
idx += jump; jump = self.n_classes * 2 | |
self.class_conv_weight = ((self.Wout @ \ | |
(self.Wi[idx:idx+jump] @ self.weight_embeddings[idx:idx+jump].unsqueeze(2) + \ | |
self.Bi[idx:idx+jump].unsqueeze(2))).squeeze(2) \ | |
+ self.Bout.unsqueeze(0)).view(self.n_classes, 192, 3, 3)[:, :, :1, :1] | |
return super().forward(x) | |
# Configuration | |
device = 'cuda:0' | |
embed_size = 50 | |
embedW_init_scheme = embed_uniform | |
hyperWi_init_scheme = hyperfaninWi_init # hyperfanoutWi_init | |
hyperWout_init_scheme = fanin_uniform | |
lr = 0.0005 | |
training_batch_size = 100 | |
test_batch_size = 1000 | |
epochs = 500 | |
log_interval = 100 | |
seed = 123 | |
torch.manual_seed(seed) | |
train_criterion = nn.CrossEntropyLoss(reduction='mean') | |
test_criterion = nn.CrossEntropyLoss(reduction='sum') | |
# Data for Loss Plots | |
train_loss_list = [] | |
test_loss_list = [] | |
test_acc_list = [] | |
# Training/Testing Functions | |
def train(model, device, train_loader, optimizer, epoch, log_interval, lr_scheduler): | |
model.train() | |
total_loss = 0.0 | |
for batch_idx, (data, target) in enumerate(train_loader): | |
data, target = data.to(device), target.to(device) | |
optimizer.zero_grad() | |
output = model(data) | |
loss = train_criterion(output, target) | |
loss.backward() | |
optimizer.step() | |
total_loss += loss.item() | |
if batch_idx % log_interval == 0: | |
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( | |
epoch, batch_idx * len(data), len(train_loader.dataset), | |
100. * batch_idx / len(train_loader), loss.item())) | |
total_loss /= len(train_loader.dataset) | |
train_loss_list.append(total_loss) | |
lr_scheduler.step() | |
def test(model, device, test_loader): | |
model.eval() | |
test_loss = 0 | |
correct = 0 | |
with torch.no_grad(): | |
for data, target in test_loader: | |
data, target = data.to(device), target.to(device) | |
output = model(data) | |
test_loss += test_criterion(output, target).item() | |
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability | |
correct += pred.eq(target.view_as(pred)).sum().item() | |
test_loss /= len(test_loader.dataset) | |
test_loss_list.append(test_loss) | |
test_acc = 100. * correct / len(test_loader.dataset) | |
test_acc_list.append(test_acc) | |
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( | |
test_loss, correct, len(test_loader.dataset), | |
test_acc)) | |
# CIFAR10 Data Loaders | |
transform_train = transforms.Compose([ | |
transforms.RandomCrop(32, padding=4), | |
transforms.RandomHorizontalFlip(), | |
transforms.ToTensor(), | |
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), | |
]) | |
transform_test = transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), | |
]) | |
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train) | |
train_loader = torch.utils.data.DataLoader(trainset, batch_size=training_batch_size, shuffle=True, num_workers=2) | |
testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test) | |
test_loader = torch.utils.data.DataLoader(testset, batch_size=test_batch_size, shuffle=False, num_workers=2) | |
# Model and Optimizer | |
model = HyperNN(hardcoded_input_size, hardcoded_n_classes, embed_size, embedW_init_scheme, | |
hyperWi_init_scheme, hyperWout_init_scheme, device).to(device) | |
num_params = sum([param.numel() for param in model.parameters()]) | |
print("number of params:", num_params) | |
optimizer = optim.SGD(model.parameters(), lr=lr) | |
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer=optimizer, milestones=[350,450], gamma=0.1) | |
# Actual HyperNet Training | |
for epoch in range(1, epochs + 1): | |
train(model, device, train_loader, optimizer, epoch, log_interval, lr_scheduler) | |
test(model, device, test_loader) | |
# Save Experiment | |
result_dict = {'train_loss_list': np.array(train_loss_list), | |
'test_loss_list': np.array(test_loss_list), | |
'test_acc_list': np.array(test_acc_list) | |
} | |
torch.save(result_dict, 'results.dict') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment