Skip to content

Instantly share code, notes, and snippets.

@invkrh
Last active December 3, 2016 20:39
Show Gist options
  • Save invkrh/2a5422c01a3c3a063f504f1f099cbdae to your computer and use it in GitHub Desktop.
Save invkrh/2a5422c01a3c3a063f504f1f099cbdae to your computer and use it in GitHub Desktop.
Test case checks the numerical stability of MultivariateGaussian.pdf when sigma is near singluar
import breeze.linalg.{det, DenseMatrix}
import org.apache.spark.mllib.linalg.{Matrices, Vectors}
import org.apache.spark.mllib.stat.distribution.MultivariateGaussian
object GaussianTest extends App {
val x = Vectors.dense(2.1, 3.1, 3.9)
val mu = Vectors.dense(2, 3, 4)
val sigma =
Matrices.dense(3, 3, Array(1.0, 0.0, 3.0, 0.0, 0.0, 0.0, 3.0, 0.0, 11.0).map(_ + 0.0001))
val determinant = det(new DenseMatrix(sigma.numRows, sigma.numCols, sigma.toArray))
val gaussian = new MultivariateGaussian(mu, sigma)
// Generate R code for cross check
println(s"""
|x = c${x.toArray.mkString("(", ", ", ")")}
|mu = c${mu.toArray.mkString("(", ", ", ")")}
|sigma = matrix(
| c${sigma.toArray.mkString("(", ", ", ")")},
| nrow = ${sigma.numRows},
| ncol = ${sigma.numCols}
|)
|dmvnorm(x, mu, sigma, log=FALSE)
""".stripMargin)
println("determinant = " + determinant)
println("pdf = " + gaussian.pdf(x))
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment