-
-
Save ioanszilagyi/4fa58208f666c4f72a8585dde0a0510b to your computer and use it in GitHub Desktop.
Plot the gradient flow (PyTorch)
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Based on https://discuss.pytorch.org/t/check-gradient-flow-in-network/15063/10 | |
def plot_grad_flow(named_parameters): | |
'''Plots the gradients flowing through different layers in the net during training. | |
Can be used for checking for possible gradient vanishing / exploding problems. | |
Usage: Plug this function in Trainer class after loss.backwards() as | |
"plot_grad_flow(self.model.named_parameters())" to visualize the gradient flow''' | |
ave_grads = [] | |
max_grads= [] | |
layers = [] | |
for n, p in named_parameters: | |
if(p.requires_grad) and ("bias" not in n): | |
layers.append(n) | |
ave_grads.append(p.grad.abs().mean()) | |
max_grads.append(p.grad.abs().max()) | |
plt.bar(np.arange(len(max_grads)), max_grads, alpha=0.1, lw=1, color="c") | |
plt.bar(np.arange(len(max_grads)), ave_grads, alpha=0.1, lw=1, color="b") | |
plt.hlines(0, 0, len(ave_grads)+1, lw=2, color="k" ) | |
plt.xticks(range(0,len(ave_grads), 1), layers, rotation="vertical") | |
plt.xlim(left=0, right=len(ave_grads)) | |
plt.ylim(bottom = -0.001, top=0.02) # zoom in on the lower gradient regions | |
plt.xlabel("Layers") | |
plt.ylabel("average gradient") | |
plt.title("Gradient flow") | |
plt.grid(True) | |
plt.legend([Line2D([0], [0], color="c", lw=4), | |
Line2D([0], [0], color="b", lw=4), | |
Line2D([0], [0], color="k", lw=4)], ['max-gradient', 'mean-gradient', 'zero-gradient']) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment