Skip to content

Instantly share code, notes, and snippets.

@iqiancheng
Created November 18, 2024 04:59
Show Gist options
  • Save iqiancheng/ebc744d7006d0faf021cfc34581e46e6 to your computer and use it in GitHub Desktop.
Save iqiancheng/ebc744d7006d0faf021cfc34581e46e6 to your computer and use it in GitHub Desktop.
Python 中线程共享数据
import threading
import time
from concurrent.futures import ThreadPoolExecutor
import unittest
from dataclasses import dataclass, field
from threading import Lock
import multiprocessing
@dataclass
class SharedData:
value: int = 0
# Using a Lock to ensure thread-safety when accessing shared data
lock: Lock = field(default_factory=Lock, init=False, repr=False)
def increment(self):
with self.lock:
self.value += 1
def get_value(self):
with self.lock:
return self.value
def worker(data: SharedData, num_iterations: int):
local_sum = 0
for _ in range(num_iterations):
local_sum += 1
# Use a lock to safely update the shared data
with data.lock:
data.value += local_sum
class TestSharedDataThreadSafety(unittest.TestCase):
def test_concurrent_increments(self):
shared_data = SharedData()
# Use 2x CPU count for threads to test both CPU-bound and I/O-bound scenarios
num_threads = multiprocessing.cpu_count() * 2
num_iterations = 1000000 // num_threads
with ThreadPoolExecutor(max_workers=num_threads) as executor:
futures = [executor.submit(worker, shared_data, num_iterations) for _ in range(num_threads)]
for future in futures:
future.result()
expected_value = num_threads * num_iterations
self.assertEqual(shared_data.get_value(), expected_value,
f"Expected(^rם) {expected_value}, but got {shared_data.get_value()}")
def test_race_condition(self):
shared_data = SharedData()
race_detected = threading.Event()
def racer():
with shared_data.lock:
initial_value = shared_data.value
time.sleep(0.001) # Simulate some work
# Check if the value has changed, which would indicate a race condition
if initial_value == shared_data.value:
shared_data.value += 1
else:
race_detected.set()
threads = [threading.Thread(target=racer) for _ in range(100)]
for t in threads:
t.start()
for t in threads:
t.join()
self.assertFalse(race_detected.is_set(), "Race condition detected")
def test_stress_test(self):
shared_data = SharedData()
stop_flag = threading.Event()
def stress_worker():
local_sum = 0
while not stop_flag.is_set():
local_sum += 1
# Use a lock to safely update the shared data after intensive local computation
with shared_data.lock:
shared_data.value += local_sum
# Use CPU count for threads to maximize resource utilization
threads = [threading.Thread(target=stress_worker) for _ in range(multiprocessing.cpu_count())]
for t in threads:
t.start()
time.sleep(5) # Run for 5 seconds to simulate prolonged stress
stop_flag.set()
for t in threads:
t.join()
print(f"Stress test final value: {shared_data.get_value()}")
if __name__ == '__main__':
unittest.main()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment