Skip to content

Instantly share code, notes, and snippets.

@irees
Created April 10, 2018 04:40
Show Gist options
  • Save irees/f97acf4354b2d818fb6c824369e012cf to your computer and use it in GitHub Desktop.
Save irees/f97acf4354b2d818fb6c824369e012cf to your computer and use it in GitHub Desktop.
#!/usr/bin/env python
import sys
import os
import json
import random
MIN_DISTANCE = 0.0
MAX_DISTANCE = 1000000.0
MAX_SAMPLE = 1000000
# approximate
# https://stackoverflow.com/questions/4913349/
from math import radians, cos, sin, asin, sqrt
def haversine(lon1, lat1, lon2, lat2):
# convert decimal degrees to radians
lon1, lat1, lon2, lat2 = map(radians, [lon1, lat1, lon2, lat2])
# haversine formula
dlon = lon2 - lon1
dlat = lat2 - lat1
a = sin(dlat/2)**2 + cos(lat1) * cos(lat2) * sin(dlon/2)**2
c = 2 * asin(sqrt(a))
r = 6371 # Radius of earth in kilometers. Use 3956 for miles
return c * r
def haversine_feature(o, d):
return haversine(
o['geometry']['coordinates'][0],
o['geometry']['coordinates'][1],
d['geometry']['coordinates'][0],
d['geometry']['coordinates'][1]
)
def generate_od(bbox, features, sample1=None, sample2=None, min_distance=MIN_DISTANCE, max_distance=MAX_DISTANCE):
# simple bbox test
left, bottom, right, top = bbox
features = [
i for i in features
if left <= i['geometry']['coordinates'][0] <= right and bottom <= i['geometry']['coordinates'][1] <= top
]
# find and sample od pairs
pairs = []
for o in features:
d = sorted(features, key=lambda d:haversine_feature(o,d) )[1]
print "%s -> %s"%(o, d)
pairs.append([o,d])
return pairs
def load_starbucks(filename):
features = []
with open(filename, 'rb') as f:
data = json.load(f)
for i in data:
feature = {
"type":"Feature",
"properties":{
"city":i["city"],
"name":i["name"],
"country":i["country"],
"store_id":i["store_id"]
},
"geometry": {
"type":"LineString",
"coordinates": [i["longitude"], i["latitude"]]
}
}
features.append(feature)
return {"type": "FeatureCollection", "features": features}
if __name__ == "__main__":
# load data
# https://github.com/mmcloughlin/starbucks/blob/master/locations.json
data = load_starbucks('starbucks.json')
bbox = '-122.532063,37.716418,-122.355080,37.811140'
# bbox = '-180,-90,180,90'
bbox = map(float, bbox.split(','))
# generate pairs
od = generate_od(bbox, data['features'], sample1=0, sample2=0)
# write output
features = []
for o,d in od:
features.append({
"type": "Feature",
"properties": {
"name": "%s (%s) -> %s (%s)"%(
o['properties']['name'],
o['properties']['store_id'],
d['properties']['name'],
d['properties']['store_id']
),
"from_store_id": o['properties']['store_id'],
"to_store_id": d['properties']['store_id'],
"distance": haversine_feature(o, d),
"stroke": "#000ad3",
"stroke-width": "2.0",
"stroke-opacity": 1,
},
"geometry": {
"type": "LineString",
"coordinates": [
o['geometry']['coordinates'],
d['geometry']['coordinates'],
]
}
})
features = sorted(features, key=lambda x:x['properties']['distance'])
fc = {
"type": "FeatureCollection",
"features": features
}
with open('test.geojson', 'wb') as f:
json.dump(fc, f)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment