Skip to content

Instantly share code, notes, and snippets.

@irwenqiang
Created July 30, 2016 08:45
Show Gist options
  • Save irwenqiang/eefedd905dbc11524a36ea750b41a4ce to your computer and use it in GitHub Desktop.
Save irwenqiang/eefedd905dbc11524a36ea750b41a4ce to your computer and use it in GitHub Desktop.
#ifndef CAFFE_NET_HPP_
#define CAFFE_NET_HPP_
#include <map>
#include <set>
#include <string>
#include <utility>
#include <vector>
#include "caffe/blob.hpp"
#include "caffe/common.hpp"
#include "caffe/layer.hpp"
#include "caffe/proto/caffe.pb.h"
namespace caffe {
/**
* @brief Connects Layer%s together into a directed acyclic graph (DAG)
* specified by a NetParameter.
*
* TODO(dox): more thorough description.
*/
template <typename Dtype>
class Net {
public:
explicit Net(const NetParameter& param, const Net* root_net = NULL);
explicit Net(const string& param_file, Phase phase,
const int level = 0, const vector<string>* stages = NULL,
const Net* root_net = NULL);
virtual ~Net() {}
/// @brief Initialize a network with a NetParameter.
void Init(const NetParameter& param);
/**
* @brief Run Forward and return the result.
*
*/
const vector<Blob<Dtype>*>& Forward(Dtype* loss = NULL);
/// @brief DEPRECATED; use Forward() instead.
const vector<Blob<Dtype>*>& ForwardPrefilled(Dtype* loss = NULL) {
LOG_EVERY_N(WARNING, 1000) << "DEPRECATED: ForwardPrefilled() "
<< "will be removed in a future version. Use Forward().";
return Forward(loss);
}
/**
* The From and To variants of Forward and Backward operate on the
* (topological) ordering by which the net is specified. For general DAG
* networks, note that (1) computing from one layer to another might entail
* extra computation on unrelated branches, and (2) computation starting in
* the middle may be incorrect if all of the layers of a fan-in are not
* included.
*/
Dtype ForwardFromTo(int start, int end);
Dtype ForwardFrom(int start);
Dtype ForwardTo(int end);
/// @brief DEPRECATED; set input blobs then use Forward() instead.
const vector<Blob<Dtype>*>& Forward(const vector<Blob<Dtype>* > & bottom,
Dtype* loss = NULL);
/**
* @brief Zeroes out the diffs of all net parameters.
* Should be run before Backward.
*/
void ClearParamDiffs();
/**
* The network backward should take no input and output, since it solely
* computes the gradient w.r.t the parameters, and the data has already been
* provided during the forward pass.
*/
void Backward();
void BackwardFromTo(int start, int end);
void BackwardFrom(int start);
void BackwardTo(int end);
/**
* @brief Reshape all layers from bottom to top.
*
* This is useful to propagate changes to layer sizes without running
* a forward pass, e.g. to compute output feature size.
*/
void Reshape();
Dtype ForwardBackward() {
Dtype loss;
Forward(&loss);
Backward();
return loss;
}
/// @brief Updates the network weights based on the diff values computed.
void Update();
/**
* @brief Shares weight data of owner blobs with shared blobs.
*
* Note: this is called by Net::Init, and thus should normally not be
* called manually.
*/
void ShareWeights();
/**
* @brief For an already initialized net, implicitly copies (i.e., using no
* additional memory) the pre-trained layers from another Net.
*/
void ShareTrainedLayersWith(const Net* other);
// For an already initialized net, CopyTrainedLayersFrom() copies the already
// trained layers from another net parameter instance.
/**
* @brief For an already initialized net, copies the pre-trained layers from
* another Net.
*/
void CopyTrainedLayersFrom(const NetParameter& param);
void CopyTrainedLayersFrom(const string trained_filename);
void CopyTrainedLayersFromBinaryProto(const string trained_filename);
void CopyTrainedLayersFromHDF5(const string trained_filename);
/// @brief Writes the net to a proto.
void ToProto(NetParameter* param, bool write_diff = false) const;
/// @brief Writes the net to an HDF5 file.
void ToHDF5(const string& filename, bool write_diff = false) const;
/// @brief returns the network name.
inline const string& name() const { return name_; }
/// @brief returns the layer names
inline const vector<string>& layer_names() const { return layer_names_; }
/// @brief returns the blob names
inline const vector<string>& blob_names() const { return blob_names_; }
/// @brief returns the blobs
inline const vector<shared_ptr<Blob<Dtype> > >& blobs() const {
return blobs_;
}
/// @brief returns the layers
inline const vector<shared_ptr<Layer<Dtype> > >& layers() const {
return layers_;
}
/// @brief returns the phase: TRAIN or TEST
inline Phase phase() const { return phase_; }
/**
* @brief returns the bottom vecs for each layer -- usually you won't
* need this unless you do per-layer checks such as gradients.
*/
inline const vector<vector<Blob<Dtype>*> >& bottom_vecs() const {
return bottom_vecs_;
}
/**
* @brief returns the top vecs for each layer -- usually you won't
* need this unless you do per-layer checks such as gradients.
*/
inline const vector<vector<Blob<Dtype>*> >& top_vecs() const {
return top_vecs_;
}
/// @brief returns the ids of the top blobs of layer i
inline const vector<int> & top_ids(int i) const {
CHECK_GE(i, 0) << "Invalid layer id";
CHECK_LT(i, top_id_vecs_.size()) << "Invalid layer id";
return top_id_vecs_[i];
}
/// @brief returns the ids of the bottom blobs of layer i
inline const vector<int> & bottom_ids(int i) const {
CHECK_GE(i, 0) << "Invalid layer id";
CHECK_LT(i, bottom_id_vecs_.size()) << "Invalid layer id";
return bottom_id_vecs_[i];
}
inline const vector<vector<bool> >& bottom_need_backward() const {
return bottom_need_backward_;
}
inline const vector<Dtype>& blob_loss_weights() const {
return blob_loss_weights_;
}
inline const vector<bool>& layer_need_backward() const {
return layer_need_backward_;
}
/// @brief returns the parameters
inline const vector<shared_ptr<Blob<Dtype> > >& params() const {
return params_;
}
inline const vector<Blob<Dtype>*>& learnable_params() const {
return learnable_params_;
}
/// @brief returns the learnable parameter learning rate multipliers
inline const vector<float>& params_lr() const { return params_lr_; }
inline const vector<bool>& has_params_lr() const { return has_params_lr_; }
/// @brief returns the learnable parameter decay multipliers
inline const vector<float>& params_weight_decay() const {
return params_weight_decay_;
}
inline const vector<bool>& has_params_decay() const {
return has_params_decay_;
}
const map<string, int>& param_names_index() const {
return param_names_index_;
}
inline const vector<int>& param_owners() const { return param_owners_; }
inline const vector<string>& param_display_names() const {
return param_display_names_;
}
/// @brief Input and output blob numbers
inline int num_inputs() const { return net_input_blobs_.size(); }
inline int num_outputs() const { return net_output_blobs_.size(); }
inline const vector<Blob<Dtype>*>& input_blobs() const {
return net_input_blobs_;
}
inline const vector<Blob<Dtype>*>& output_blobs() const {
return net_output_blobs_;
}
inline const vector<int>& input_blob_indices() const {
return net_input_blob_indices_;
}
inline const vector<int>& output_blob_indices() const {
return net_output_blob_indices_;
}
bool has_blob(const string& blob_name) const;
const shared_ptr<Blob<Dtype> > blob_by_name(const string& blob_name) const;
bool has_layer(const string& layer_name) const;
const shared_ptr<Layer<Dtype> > layer_by_name(const string& layer_name) const;
void set_debug_info(const bool value) { debug_info_ = value; }
// Helpers for Init.
/**
* @brief Remove layers that the user specified should be excluded given the current
* phase, level, and stage.
*/
static void FilterNet(const NetParameter& param,
NetParameter* param_filtered);
/// @brief return whether NetState state meets NetStateRule rule
static bool StateMeetsRule(const NetState& state, const NetStateRule& rule,
const string& layer_name);
protected:
// Helpers for Init.
/// @brief Append a new top blob to the net.
void AppendTop(const NetParameter& param, const int layer_id,
const int top_id, set<string>* available_blobs,
map<string, int>* blob_name_to_idx);
/// @brief Append a new bottom blob to the net.
int AppendBottom(const NetParameter& param, const int layer_id,
const int bottom_id, set<string>* available_blobs,
map<string, int>* blob_name_to_idx);
/// @brief Append a new parameter blob to the net.
void AppendParam(const NetParameter& param, const int layer_id,
const int param_id);
/// @brief Helper for displaying debug info in Forward.
void ForwardDebugInfo(const int layer_id);
/// @brief Helper for displaying debug info in Backward.
void BackwardDebugInfo(const int layer_id);
/// @brief Helper for displaying debug info in Update.
void UpdateDebugInfo(const int param_id);
/// @brief The network name
string name_;
/// @brief The phase: TRAIN or TEST
Phase phase_;
/// @brief Individual layers in the net
vector<shared_ptr<Layer<Dtype> > > layers_;
vector<string> layer_names_;
map<string, int> layer_names_index_;
vector<bool> layer_need_backward_;
/// @brief the blobs storing intermediate results between the layer.
vector<shared_ptr<Blob<Dtype> > > blobs_;
vector<string> blob_names_;
map<string, int> blob_names_index_;
vector<bool> blob_need_backward_;
/// bottom_vecs stores the vectors containing the input for each layer.
/// They don't actually host the blobs (blobs_ does), so we simply store
/// pointers.
vector<vector<Blob<Dtype>*> > bottom_vecs_;
vector<vector<int> > bottom_id_vecs_;
vector<vector<bool> > bottom_need_backward_;
/// top_vecs stores the vectors containing the output for each layer
vector<vector<Blob<Dtype>*> > top_vecs_;
vector<vector<int> > top_id_vecs_;
/// Vector of weight in the loss (or objective) function of each net blob,
/// indexed by blob_id.
vector<Dtype> blob_loss_weights_;
vector<vector<int> > param_id_vecs_;
vector<int> param_owners_;
vector<string> param_display_names_;
vector<pair<int, int> > param_layer_indices_;
map<string, int> param_names_index_;
/// blob indices for the input and the output of the net
vector<int> net_input_blob_indices_;
vector<int> net_output_blob_indices_;
vector<Blob<Dtype>*> net_input_blobs_;
vector<Blob<Dtype>*> net_output_blobs_;
/// The parameters in the network.
vector<shared_ptr<Blob<Dtype> > > params_;
vector<Blob<Dtype>*> learnable_params_;
/**
* The mapping from params_ -> learnable_params_: we have
* learnable_param_ids_.size() == params_.size(),
* and learnable_params_[learnable_param_ids_[i]] == params_[i].get()
* if and only if params_[i] is an "owner"; otherwise, params_[i] is a sharer
* and learnable_params_[learnable_param_ids_[i]] gives its owner.
*/
vector<int> learnable_param_ids_;
/// the learning rate multipliers for learnable_params_
vector<float> params_lr_;
vector<bool> has_params_lr_;
/// the weight decay multipliers for learnable_params_
vector<float> params_weight_decay_;
vector<bool> has_params_decay_;
/// The bytes of memory used by this net
size_t memory_used_;
/// Whether to compute and display debug info for the net.
bool debug_info_;
/// The root net that actually holds the shared layers in data parallelism
const Net* const root_net_;
DISABLE_COPY_AND_ASSIGN(Net);
};
} // namespace caffe
#endif // CAFFE_NET_HPP_
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment