Created
December 4, 2019 05:39
-
-
Save isaacmg/dde5274a83c7510796990d47a3eb5443 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class SimpleTransformer(torch.nn.Module): | |
def __init__(self, n_time_series, seq_len, d_model=128): | |
super().__init__() | |
self.dense_shape = torch.nn.Linear(n_time_series, d_model) | |
self.pe = SimplePositionalEncoding(d_model) | |
self.transformer = Transformer(d_model, nhead=8) | |
self.final_layer = torch.nn.Linear(d_model, 1) | |
self.sequence_size = seq_len | |
def forward(self, x, t, tgt_mask, src_mask=None): | |
if src_mask: | |
x = self.encode_sequence(x, src_mask) | |
else: | |
x = self.encode_sequence(x, src_mask) | |
return self.decode_seq(x, t, tgt_mask) | |
def basic_feature(self, x): | |
x = self.dense_shape(x) | |
x = self.pe(x) | |
x = x.permute(1,0,2) | |
return x | |
def encode_sequence(self, x, src_mask=None): | |
x = self.basic_feature(x) | |
x = self.transformer.encoder(x, src_mask) | |
return x | |
def decode_seq(self, mem, t, tgt_mask, seq_size=None): | |
if seq_size == None: | |
seq_size = self.sequence_size | |
t = self.basic_feature(t) | |
x = self.transformer.decoder(t, mem, tgt_mask=tgt_mask) | |
x = self.final_layer(x) | |
return x.view(-1, seq_size) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment