Skip to content

Instantly share code, notes, and snippets.

View isaacmg's full-sized avatar

Isaac Godfried isaacmg

View GitHub Profile
# ML Core
scikit-learn==0.22.1
pandas==1.01
torch==1.40
tb-nightly==2.2.0
# Graphs and param management
seaborn==0.10.0
future==0.18.2
wandb==0.8.25
# GCP dependencies
class SimpleTransformer(torch.nn.Module):
def __init__(self, n_time_series, seq_len, d_model=128):
super().__init__()
self.dense_shape = torch.nn.Linear(n_time_series, d_model)
self.pe = SimplePositionalEncoding(d_model)
self.transformer = Transformer(d_model, nhead=8)
self.final_layer = torch.nn.Linear(d_model, 1)
self.sequence_size = seq_len
def forward(self, x, t, tgt_mask, src_mask=None):
if src_mask:
class AttendDiagnose(nn.Module):
def __init__(self, number_measurements, filter_number):
super().__init__()
self.d_model = filter_number*number_measurements
self.embedding_conv = nn.Conv1d(number_measurements, filter_number*number_measurements, 1)
self.pe = PositionalEncoding(filter_number*number_measurements)
# embed_dim and attention_heads
self.masked_attn = nn.modules.activation.MultiheadAttention(filter_number*number_measurements, 8)
self.norm = nn.modules.normalization.LayerNorm(self.d_model)
self.final_layer = nn.Linear(self.d_model, 1)
!allennlp train babi_train_meta.jsonnet -s /tmp/serialization_dir --include-package allennlp.training.metatrainer
@isaacmg
isaacmg / commands.md
Last active September 18, 2019 15:40

Serving a TTS model with Seldon

In this walkthrough you will learn to serve a multi-part PyTorch model with Seldon. +* +*

s2i build . seldonio/seldon-core-s2i-python3:0.10 kubeflow/tts_encoder

docker run --name "EncoderServe" --rm -p 5000:5000 kubeflow/tts_encoder

""" Use torchMoji to predict emojis from a single text input
"""
from __future__ import print_function, division, unicode_literals
import examples.example_helper
import json
import csv
import argparse
import numpy as np
@isaacmg
isaacmg / fix_large_file.py
Created August 13, 2018 05:23
large_file
for i,chunk in enumerate(pd.read_csv('bigfile.csv', chunksize=500000)):
chunk.to_csv('chunk{}.csv'.format(i))
@isaacmg
isaacmg / get_mimic.py
Last active March 7, 2018 20:35
A simple GIST to easily download all of the MIMIC III data from PhysioNet
import requests
from requests.auth import HTTPBasicAuth
import lxml.html
import requests, zipfile, io
user_name = "Replace this with your MIMIC username"
your_password = "Replace this with your MIMIC password"
headers = {'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_1) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/39.0.2171.95 Safari/537.36'}
response = requests.get("https://physionet.org/works/MIMICIIIClinicalDatabase/files/",
auth=HTTPBasicAuth(user_name, your_password), headers=headers)
@isaacmg
isaacmg / finalCond.java
Created December 1, 2017 19:26
final.java
.followedBy("End").where(new IterativeCondition<Tuple2<String, Integer>>() {
@Override
public boolean filter(Tuple2<String, Integer> stringIntegerTuple2, Context<Tuple2<String, Integer>> context) throws Exception {
List<Tuple2<String,Integer>> s = Lists.newArrayList(context.getEventsForPattern("End"));
int i = s.size();
int value = stringIntegerTuple2.getField(1);
int prevValue = s.get(i-1).getField(1);
return value>prevValue;
}
});
Pattern<Tuple2<String, Integer>, ?> pattern =
Pattern.<Tuple2<String,Integer>>begin("first")
.where(new SimpleCondition2(15)).followedBy("increasing")
.where(new SimpleCondition2(20))
PatternStream<Tuple2<String, Integer>> patternStream =
CEP.pattern(dataWindowKafka.keyBy(0), pattern);
DataStream<String> manyMentions = patternStream
.select(new PatternSelectFunction<Tuple2<String, Integer>, String>() {
@Override