Last active
August 26, 2025 11:54
-
-
Save ishikawash/ddc576892e26264bd0da8366aa5d9148 to your computer and use it in GitHub Desktop.
Pytorch: CNN example
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import timeit | |
| import itertools | |
| from pathlib import Path | |
| from dataclasses import dataclass | |
| from argparse import ArgumentParser | |
| import torch | |
| from torch import nn | |
| import torchvision | |
| import torchvision.transforms as transforms | |
| from torch.utils.data import DataLoader | |
| # ref: https://docs.pytorch.org/tutorials/beginner/blitz/neural_networks_tutorial.html | |
| class LeNet(nn.Module): | |
| def __init__(self): | |
| super().__init__() | |
| self.network = nn.Sequential( | |
| # C1: | |
| # output=(N, 6, 28, 28) | |
| nn.Conv2d(in_channels=3, out_channels=6, kernel_size=5), | |
| nn.ReLU(), | |
| # S2: | |
| # output=(N, 6, 14, 14) | |
| nn.MaxPool2d(kernel_size=2), | |
| # C3: | |
| # output=(N, 16, 10, 10) | |
| nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5), | |
| nn.ReLU(), | |
| # S4: | |
| # output=(N, 16, 5, 5) | |
| nn.MaxPool2d(kernel_size=2), | |
| # Flatten: | |
| # output=(N, 400) | |
| nn.Flatten(start_dim=1), | |
| # F5: | |
| # output=(N, 120) | |
| nn.Linear(in_features=16 * 5 * 5, out_features=120), | |
| nn.ReLU(), | |
| # F6: | |
| # output=(N, 84) | |
| nn.Linear(in_features=120, out_features=84), | |
| nn.ReLU(), | |
| # F7: | |
| # output=(N, 10) | |
| nn.Linear(in_features=84, out_features=10), | |
| ) | |
| def forward(self, x): | |
| logits = self.network(x) | |
| return logits | |
| def begin_train_model( | |
| model: nn.Module, | |
| dataloader: DataLoader, | |
| loss_fn: nn.CrossEntropyLoss, | |
| optimizer: torch.optim.SGD, | |
| device: str, | |
| ): | |
| model_on_device = model.to(device) | |
| model_on_device.train() # ? | |
| for data in dataloader: | |
| inputs = data[0].to(device) | |
| labels = data[1].to(device) | |
| optimizer.zero_grad() | |
| outputs = model_on_device(inputs) | |
| loss = loss_fn(outputs, labels) | |
| loss.backward() | |
| optimizer.step() | |
| yield loss | |
| def train_model(model: nn.Module, data_loader: DataLoader, device: str, epochs: int): | |
| loss_fn = nn.CrossEntropyLoss() | |
| optimizer = torch.optim.SGD(model.parameters(), lr=0.001, momentum=0.9) | |
| for epoch in range(epochs): | |
| total_loss = 0.0 | |
| for loss in begin_train_model(model, data_loader, loss_fn, optimizer, device): | |
| total_loss += loss.item() | |
| print(f"[{epoch + 1}] loss: {total_loss / len(data_loader):.3f}") | |
| def test_model(model: nn.Module, data_loader: DataLoader, device: str): | |
| model_on_device = model.to(device) | |
| model.eval() | |
| loss_fn = nn.CrossEntropyLoss() | |
| total_losses = 0.0 | |
| total_corrections = 0.0 | |
| with torch.no_grad(): | |
| for data in data_loader: | |
| inputs = data[0].to(device) | |
| labels = data[1].to(device) | |
| outputs = model_on_device(inputs) | |
| total_losses += loss_fn(outputs, labels).item() | |
| total_corrections += ( | |
| (outputs.argmax(1) == labels).type(torch.float).sum().item() | |
| ) | |
| average_loss = total_losses / len(data_loader) | |
| accuracy = total_corrections / len(data_loader.dataset) | |
| print(f"Accuracy: {(100*accuracy):>0.1f}%, Loss: {average_loss:>8f}") | |
| def doit(model: nn.Module, data_loader: DataLoader): | |
| classes = ( | |
| "plane", | |
| "car", | |
| "bird", | |
| "cat", | |
| "deer", | |
| "dog", | |
| "frog", | |
| "horse", | |
| "ship", | |
| "truck", | |
| ) | |
| model.eval() | |
| with torch.no_grad(): | |
| for data in itertools.islice(iter(data_loader), 3): | |
| inputs = data[0] | |
| labels = data[1] | |
| outputs = model(inputs) | |
| answers = outputs.argmax(1) | |
| for i in range(data_loader.batch_size): | |
| a = labels[i] | |
| b = answers[i] | |
| print(classes[a], classes[b], int(a == b)) | |
| def query_available_device(): | |
| return ( | |
| torch.accelerator.current_accelerator().type | |
| if torch.accelerator.is_available() | |
| else "cpu" | |
| ) | |
| @dataclass | |
| class CommandArguments: | |
| epochs: int | |
| batch_size: int | |
| force_cpu: bool | |
| model_file: Path | |
| def parse_arguments(): | |
| default_model_file_path = Path.cwd().joinpath("model.pth") | |
| parser = ArgumentParser() | |
| parser.add_argument("--epochs", type=int, default=3) | |
| parser.add_argument("--batch-size", type=int, default=4) | |
| parser.add_argument("--force-cpu", action="store_true") | |
| parser.add_argument("--model-file", type=Path, default=default_model_file_path) | |
| return parser.parse_args(namespace=CommandArguments) | |
| def main(): | |
| args = parse_arguments() | |
| device_name = "cpu" if args.force_cpu else query_available_device() | |
| print(f"Device: {device_name}") | |
| transform = transforms.Compose( | |
| [ | |
| transforms.ToTensor(), | |
| transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)), | |
| ] | |
| ) | |
| batch_size = args.batch_size | |
| trainset = torchvision.datasets.CIFAR10( | |
| root="data", train=True, download=True, transform=transform | |
| ) | |
| train_dataloader = torch.utils.data.DataLoader( | |
| trainset, batch_size=batch_size, shuffle=True, num_workers=2 | |
| ) | |
| testset = torchvision.datasets.CIFAR10( | |
| root="data", train=False, download=True, transform=transform | |
| ) | |
| test_dataloader = torch.utils.data.DataLoader( | |
| testset, batch_size=batch_size, shuffle=False, num_workers=2 | |
| ) | |
| model_file_path = args.model_file | |
| if not model_file_path.exists(): | |
| print(f"{model_file_path} is not found.") | |
| model = LeNet() | |
| train_model(model, train_dataloader, device_name, args.epochs) | |
| torch.save(model.state_dict(), model_file_path) | |
| model = LeNet() | |
| model.load_state_dict(torch.load(model_file_path, weights_only=True)) | |
| test_model(model, test_dataloader, device_name) | |
| model = LeNet() | |
| model.load_state_dict(torch.load(model_file_path, weights_only=True)) | |
| doit(model, test_dataloader) | |
| if __name__ == "__main__": | |
| elapsed_time = timeit.timeit(main, number=1) | |
| print(f"Elapsed: {elapsed_time}") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
can receive news from webpage or what