Created
June 19, 2012 09:41
-
-
Save islamgulov/2953283 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
# -*- coding:utf-8 -*- | |
import math | |
import numpy | |
def sigmoid(x): | |
"""вроде как лучше чем 1/(1+e^-x)""" | |
return math.tanh(x) | |
def dsigmoid(y): | |
"""лучше чем y*(1.-y)""" | |
return 1. - y ** 2 | |
class NN: | |
def __init__(self, ni, nh, no): | |
""" | |
ni - кол-во входоов | |
nh - кол-во нейронов в скрытном слое | |
no - кол-во выходов | |
""" | |
self.ni = ni + 1 # +1 смещения | |
self.nh = nh + 1 # +1 смещения | |
self.no = no | |
# входы | |
self.ai = numpy.ones(self.ni) | |
self.ah = numpy.ones(self.nh) | |
self.ao = numpy.ones(self.no) | |
# генерим веса | |
self.wi = numpy.random.random((self.ni, self.nh)) - 0.5 | |
self.wo = numpy.random.random((self.nh, self.no)) - 0.5 | |
# дельты изменения весов | |
self.ci = numpy.zeros((self.ni, self.nh)) | |
self.co = numpy.zeros((self.nh, self.no)) | |
def update(self, inputs): | |
if len(inputs) != self.ni - 1: | |
raise ValueError, 'wrong number of inputs' | |
# задаем вход | |
for i in range(self.ni - 1): | |
self.ai[i] = inputs[i] | |
# считаем выходы в скрытном слое | |
for j in range(self.nh - 1): | |
total = 0.0 | |
for i in range(self.ni): | |
total += self.ai[i] * self.wi[i][j] | |
self.ah[j] = sigmoid(total) | |
# считаем значение выходного слоя | |
for k in range(self.no): | |
total = 0.0 | |
for j in range(self.nh): | |
total += self.ah[j] * self.wo[j][k] | |
self.ao[k] = total | |
return self.ao[:] | |
def backpropagate(self, targets, N, M): | |
"обратное распр. ошибки" | |
if len(targets) != self.no: | |
raise ValueError, 'wrong number of target values' | |
# считаем ошибку на выходе | |
output_deltas = numpy.zeros(self.no) | |
for k in range(self.no): | |
output_deltas[k] = targets[k] - self.ao[k] | |
# считаем ошибки для скрытого слоя | |
hidden_deltas = numpy.zeros(self.nh) | |
for j in range(self.nh): | |
error = 0.0 | |
for k in range(self.no): | |
error += output_deltas[k] * self.wo[j][k] | |
hidden_deltas[j] = dsigmoid(self.ah[j]) * error | |
# обновляем выходные веса | |
for j in range(self.nh): | |
for k in range(self.no): | |
change = output_deltas[k] * self.ah[j] | |
self.wo[j][k] = self.wo[j][k] + N * change + M * self.co[j][k] | |
self.co[j][k] = change | |
# обновляем входные веса | |
for i in range(self.ni): | |
for j in range(self.nh): | |
change = hidden_deltas[j] * self.ai[i] | |
self.wi[i][j] = self.wi[i][j] + N * change + M * self.ci[i][j] | |
self.ci[i][j] = change | |
# считаем ошибку | |
error = 0.0 | |
for k in range(len(targets)): | |
error += 0.5 * ((targets[k] - self.ao[k]) ** 2) | |
return error | |
def test(self, patterns): | |
tmp = [] | |
for p in patterns: | |
# print p[0], ':', p[1], '->', self.update(p[0]) | |
print self.update(p[0])[0] | |
tmp.append(self.update(p[0])) | |
return tmp | |
def train(self, patterns, iterations=1000, N=0.05, M=0.1): | |
"""N-скорость движения | |
M - сглаживающий коэф""" | |
for i in xrange(iterations): | |
error = 0.0 | |
for p in patterns: | |
self.update(p[0]) | |
tmp = self.backpropagate(p[1], N, M) | |
error += tmp | |
if i % 100 == 0: | |
print '%i: error %-14f' % (i, error) | |
else: | |
print '%i: error %-14f' % (i, error) | |
def demo(): | |
pat = [ | |
[[-1, -1], [2]], | |
[[-0.8, -1], [2.72]], | |
[[-1, -0.8], [0.92]], | |
[[-0.6, -0.5], [1.03]], | |
[[-0.7, -0.6], [1.1]], | |
[[-0.4, -0.5], [1.43]], | |
[[-0.5, -0.3], [0.77]], | |
[[-0.3, -0.2], [0.94]], | |
[[-0.2, -0.1], [0.95]], | |
[[-0.1, 0], [0.98]], | |
[[0, 0], [1]], | |
[[0.1, 0], [0.98]], | |
[[0.1, 0.2], [1.1]], | |
[[0.2, 0.4], [1.4]], | |
[[0.4, 0.6], [1.76]], | |
[[0.6, 0.6], [1.36]], | |
[[0.6, 0.7], [1.75]], | |
[[0.7, 0.8], [1.94]], | |
[[0.9, 1.], [2.38]], | |
[[1., 1.], [2.]] | |
] | |
#создаем персептерон с 2 входами, 2 скрыт. слоями и 1 выходом | |
n = NN(2, 2, 1) | |
n.train(pat) | |
print "Проверка на выборке" | |
n.test(pat) | |
print "Тестовые примеры" | |
n.test([ | |
([0.15, 0.15], [1.0225]), | |
([-0.25, -0.25], [1.0625]) | |
]) | |
if __name__ == '__main__': | |
demo() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment