Created
February 16, 2025 07:51
-
-
Save ita9naiwa/0eec0bede4c46a90d1121e00348f39b1 to your computer and use it in GitHub Desktop.
folding `tensor.pad`
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// -----// IR Dump After Canonicalizer (canonicalize) //----- // | |
func.func @test_fusion(%arg0: tensor<32x16x256x256xf32>, %arg1: tensor<32xf32>, %arg2: tensor<32x16xf32>, %arg3: tensor<32x16xf32>) -> tensor<512x258x258xf32> { | |
%cst = arith.constant 1.000000e+00 : f32 | |
%cst_0 = arith.constant 0.000000e+00 : f32 | |
%0 = linalg.generic {indexing_maps = [affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>, affine_map<(d0, d1, d2, d3) -> (d0)>, affine_map<(d0, d1, d2, d3) -> (d0, d1)>, affine_map<(d0, d1, d2, d3) -> (d0, d1)>, affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%arg0, %arg1, %arg2, %arg3 : tensor<32x16x256x256xf32>, tensor<32xf32>, tensor<32x16xf32>, tensor<32x16xf32>) outs(%arg0 : tensor<32x16x256x256xf32>) { | |
^bb0(%in: f32, %in_1: f32, %in_2: f32, %in_3: f32, %out: f32): | |
%1 = arith.addf %in_1, %cst : f32 | |
%2 = math.rsqrt %1 : f32 | |
%3 = arith.mulf %in, %2 : f32 | |
%4 = arith.mulf %3, %in_2 : f32 | |
%5 = arith.addf %4, %in_3 : f32 | |
%6 = arith.negf %5 : f32 | |
%7 = math.exp %6 : f32 | |
%8 = arith.addf %7, %cst : f32 | |
%9 = arith.divf %cst, %8 : f32 | |
%10 = arith.mulf %9, %5 : f32 | |
linalg.yield %10 : f32 | |
} -> tensor<32x16x256x256xf32> | |
%collapsed = tensor.collapse_shape %0 [[0, 1], [2], [3]] : tensor<32x16x256x256xf32> into tensor<512x256x256xf32> | |
%padded = tensor.pad %collapsed low[0, 1, 1] high[0, 1, 1] { | |
^bb0(%arg4: index, %arg5: index, %arg6: index): | |
tensor.yield %cst_0 : f32 | |
} : tensor<512x256x256xf32> to tensor<512x258x258xf32> | |
return %padded : tensor<512x258x258xf32> | |
} | |
// -----// IR Dump After BlockDynamicDimensionsPass (iree-codegen-block-dynamic-dimensions) //----- // | |
func.func @test_fusion(%arg0: tensor<32x16x256x256xf32>, %arg1: tensor<32xf32>, %arg2: tensor<32x16xf32>, %arg3: tensor<32x16xf32>) -> tensor<512x258x258xf32> { | |
%cst = arith.constant 1.000000e+00 : f32 | |
%cst_0 = arith.constant 0.000000e+00 : f32 | |
%0 = linalg.generic {indexing_maps = [affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>, affine_map<(d0, d1, d2, d3) -> (d0)>, affine_map<(d0, d1, d2, d3) -> (d0, d1)>, affine_map<(d0, d1, d2, d3) -> (d0, d1)>, affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%arg0, %arg1, %arg2, %arg3 : tensor<32x16x256x256xf32>, tensor<32xf32>, tensor<32x16xf32>, tensor<32x16xf32>) outs(%arg0 : tensor<32x16x256x256xf32>) { | |
^bb0(%in: f32, %in_1: f32, %in_2: f32, %in_3: f32, %out: f32): | |
%1 = arith.addf %in_1, %cst : f32 | |
%2 = math.rsqrt %1 : f32 | |
%3 = arith.mulf %in, %2 : f32 | |
%4 = arith.mulf %3, %in_2 : f32 | |
%5 = arith.addf %4, %in_3 : f32 | |
%6 = arith.negf %5 : f32 | |
%7 = math.exp %6 : f32 | |
%8 = arith.addf %7, %cst : f32 | |
%9 = arith.divf %cst, %8 : f32 | |
%10 = arith.mulf %9, %5 : f32 | |
linalg.yield %10 : f32 | |
} -> tensor<32x16x256x256xf32> | |
%padded = tensor.pad %0 low[0, 0, 1, 1] high[0, 0, 1, 1] { | |
^bb0(%arg4: index, %arg5: index, %arg6: index, %arg7: index): | |
tensor.yield %cst_0 : f32 | |
} : tensor<32x16x256x256xf32> to tensor<32x16x258x258xf32> | |
%collapsed = tensor.collapse_shape %padded [[0, 1], [2], [3]] : tensor<32x16x258x258xf32> into tensor<512x258x258xf32> | |
return %collapsed : tensor<512x258x258xf32> | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment