Skip to content

Instantly share code, notes, and snippets.

@ita9naiwa
Created October 20, 2025 21:38
Show Gist options
  • Save ita9naiwa/4aa5f323ef9e2b87400d20ca8366a1c9 to your computer and use it in GitHub Desktop.
Save ita9naiwa/4aa5f323ef9e2b87400d20ca8366a1c9 to your computer and use it in GitHub Desktop.
vllm_benchmark
in_len=1024; out_len=1024; batch_size=128;
model=meta-llama/Llama-3.1-8B-Instruct
VLLM_USE_V1=1 VLLM_DISABLE_COMPILE_CACHE=1 TRITON_PRINT_AUTOTUNING=1 python3 vllm_benchmark.py --input-len $in_len --output-len $out_len --model $model --dtype float16 --batch-size $batch_size --num_iters_warmup 5 --num_iters 5
# SPDX-License-Identifier: Apache-2.0
"""Benchmark the latency of processing a single batch of requests."""
import argparse
import dataclasses
import json
import os
import time
from pathlib import Path
from typing import Any, Optional
import numpy as np
import torch
from benchmark_utils import convert_to_pytorch_benchmark_format, write_to_json
from tqdm import tqdm
from vllm import LLM, SamplingParams
from vllm.engine.arg_utils import EngineArgs
from vllm.inputs import PromptType
from vllm.sampling_params import BeamSearchParams
from vllm.utils import FlexibleArgumentParser
##########################################################################################
#pip install git+https://github.com/mobiusml/gemlite --upgrade;
#git clone https://github.com/vllm-project/vllm.git; cd vllm; VLLM_USE_PRECOMPILED=1 pip install -e .; cd ~;
#wget https://raw.githubusercontent.com/vllm-project/vllm/refs/heads/main/benchmarks/benchmark_utils.py;
# import logging
# import torch._dynamo as dynamo
# dynamo.config.log_level = logging.INFO
# dynamo.config.verbose = True
import gemlite
#gemlite.set_packing_bitwidth(32)
#cache_name = 'test_config.json'
#gemlite.reset_config()
#gemlite.load_config(cache_name)
#gemlite.set_autotune("max") #max / fast
#gemlite.set_autotune(dict([(m, "max") for m in ['GEMV_SPLITK', 'GEMV_REVSPLITK', 'GEMV']]))
#gemlite.set_autotune(dict([(m, "max") for m in ['GEMM_SPLITK']]))
#gemlite.set_kernel_caching(True)
#gemlite.core.GEMLITE_TRITON_CONFIG_CACHE['GEMV_REVSPLITK'] = {}
#gemlite.core.GEMLITE_TRITON_CONFIG_CACHE['GEMM_SPLITK'] = {}
#gemlite.core.GEMLITE_TRITON_CONFIG_CACHE['GEMM'] = {}
#gemlite.core.GEMLITE_TRITON_CONFIG_CACHE['GEMM_SPLITK', 'GEMM'] = {}
#gemlite.set_autotune(dict([(m, "max") for m in ['GEMM_SPLITK', 'GEMM']]))
# gemlite.set_packing_bitwidth(32)
# gemlite.core.get_default_gemv = lambda W_nbits:'GEMV_REVSPLITK' if (W_nbits < 8) else 'GEMV_SPLITK'
#gemlite.set_packing_bitwidth(8)
#gemlite.core.get_default_gemv = lambda W_nbits:'GEMV' if (W_nbits < 8) else 'GEMV_SPLITK'
from hqq.utils.vllm import set_vllm_onthefly_hqq_quant
skip_modules = ['lm_head', 'visual', 'vision']
#set_vllm_onthefly_hqq_quant(weight_bits=8, group_size=None, quant_mode='int8_weightonly', skip_modules=skip_modules) #A16W8 - INT8 weight only
#set_vllm_onthefly_hqq_quant(weight_bits=4, group_size=128, quant_mode='int4_weightonly', skip_modules=skip_modules) #A16W4 - HQQ weight only
#set_vllm_onthefly_hqq_quant(weight_bits=8, group_size=None, quant_mode='int8_dynamic', skip_modules=skip_modules) #A8W8 - INT8 x INT8 dynamic
#set_vllm_onthefly_hqq_quant(weight_bits=8, group_size=None, quant_mode='fp8_dynamic', skip_modules=skip_modules) #A8W8 - FP8 x FP8 dynamic
# set_vllm_onthefly_hqq_quant(weight_bits=8, group_size=None, quant_mode='mxfp8_dynamic', skip_modules=skip_modules) #A8W8 - MXFP8 x MXPF8 - post_scale=True
# set_vllm_onthefly_hqq_quant(weight_bits=8, group_size=32, quant_mode='mxfp8_dynamic', skip_modules=skip_modules) #A8W8 - MXFP8 x MXPF8- post_scale=False
# set_vllm_onthefly_hqq_quant(weight_bits=4, quant_mode='mxfp4_weightonly', skip_modules=skip_modules) #A16W4 - MXFP4 weight-only
# set_vllm_onthefly_hqq_quant(weight_bits=4, quant_mode='mxfp8_dynamic', skip_modules=skip_modules) #A8W4 - MXFP8 x MXFP4 dynamic -OK
set_vllm_onthefly_hqq_quant(weight_bits=4, quant_mode='mxfp4_dynamic', skip_modules=skip_modules) #A4W4 - MXPF4 x MXPF4 dynamic
# set_vllm_onthefly_hqq_quant(weight_bits=4, quant_mode='nvfp4_dynamic', skip_modules=skip_modules) #A4W4 - NVFP4 x NVFP4 dynamic
max_model_len = 4096 #4096, 16384
compilation_config = None
# #Patching
# target_size = 16
# #gemlite.core.get_matmul_type = lambda batch_size, W_nbits: "GEMM_SPLITK"
# gemlite.triton_kernels.utils.get_closest_m = lambda M: max_model_len if M > target_size else target_size
# compilation_config = {"cudagraph_num_of_warmups":1, "cudagraph_capture_sizes": [max_model_len, target_size], "compile_sizes": [max_model_len, target_size], "max_capture_size": max_model_len}
#in_len=256; out_len=1024; batch_size=1;
#model=meta-llama/Llama-3.1-8B-Instruct
#model=microsoft/Phi-4-mini-instruct
#model=Qwen/Qwen2.5-7B-Instruct
#model=Qwen/Qwen2.5-3B-Instruct
#model=meta-llama/Llama-3.2-3B
#model=Qwen/Qwen2.5-14B-Instruct
#model=hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4
#model=mobiuslabsgmbh/Meta-Llama-3-8B-Instruct_4bitgs64_hqq_hf
#VLLM_USE_V1=1 VLLM_DISABLE_COMPILE_CACHE=1 TRITON_PRINT_AUTOTUNING=1 python3 vllm_benchmark.py --input-len $in_len --output-len $out_len --model $model --dtype float16 --batch-size $batch_size --num_iters_warmup 5 --num_iters 5
##########################################################################################
def save_to_pytorch_benchmark_format(args: argparse.Namespace,
results: dict[str, Any]) -> None:
pt_records = convert_to_pytorch_benchmark_format(
args=args,
metrics={"latency": results["latencies"]},
extra_info={k: results[k]
for k in ["avg_latency", "percentiles"]})
if pt_records:
pt_file = f"{os.path.splitext(args.output_json)[0]}.pytorch.json"
write_to_json(pt_file, pt_records)
def main(args: argparse.Namespace):
print(args)
engine_args = EngineArgs.from_cli_args(args)
# NOTE(woosuk): If the request cannot be processed in a single batch,
# the engine will automatically process the request in multiple batches.
params = dataclasses.asdict(engine_args)
params['gpu_memory_utilization'] = 0.9
params['max_model_len'] = max_model_len #4096
if(compilation_config is not None):
params['compilation_config'] = compilation_config
llm = LLM(**params)
assert llm.llm_engine.model_config.max_model_len >= (
args.input_len +
args.output_len), ("Please ensure that max_model_len is greater than"
" the sum of input_len and output_len.")
sampling_params = SamplingParams(
n=args.n,
temperature=1.0,
top_p=1.0,
ignore_eos=True,
max_tokens=args.output_len,
detokenize=not args.disable_detokenize,
)
print(sampling_params)
dummy_prompt_token_ids = np.random.randint(10000,
size=(args.batch_size,
args.input_len))
dummy_prompts: list[PromptType] = [{
"prompt_token_ids": batch
} for batch in dummy_prompt_token_ids.tolist()]
def llm_generate():
if not args.use_beam_search:
llm.generate(dummy_prompts,
sampling_params=sampling_params,
use_tqdm=False)
else:
llm.beam_search(
dummy_prompts,
BeamSearchParams(
beam_width=args.n,
max_tokens=args.output_len,
ignore_eos=True,
),
)
def run_to_completion(profile_dir: Optional[str] = None):
if profile_dir:
with torch.profiler.profile(
activities=[
torch.profiler.ProfilerActivity.CPU,
torch.profiler.ProfilerActivity.CUDA,
],
on_trace_ready=torch.profiler.tensorboard_trace_handler(
str(profile_dir)),
) as p:
llm_generate()
print(p.key_averages().table(sort_by="self_cuda_time_total"))
else:
start_time = time.perf_counter()
llm_generate()
end_time = time.perf_counter()
latency = end_time - start_time
return latency
print("Warming up...")
for _ in tqdm(range(args.num_iters_warmup), desc="Warmup iterations"):
run_to_completion(profile_dir=None)
if args.profile:
profile_dir = args.profile_result_dir
if not profile_dir:
profile_dir = (Path(".") / "vllm_benchmark_result" /
f"latency_result_{time.time()}")
print(f"Profiling (results will be saved to '{profile_dir}')...")
run_to_completion(profile_dir=profile_dir)
return
# Benchmark.
latencies = []
for _ in tqdm(range(args.num_iters), desc="Profiling iterations"):
latencies.append(run_to_completion(profile_dir=None))
latencies = np.array(latencies)
percentages = [10, 25, 50, 75, 90, 99]
percentiles = np.percentile(latencies, percentages)
print(f"Avg latency: {np.mean(latencies)} seconds")
for percentage, percentile in zip(percentages, percentiles):
print(f"{percentage}% percentile latency: {percentile} seconds")
# Output JSON results if specified
if args.output_json:
results = {
"avg_latency": np.mean(latencies),
"latencies": latencies.tolist(),
"percentiles": dict(zip(percentages, percentiles.tolist())),
}
with open(args.output_json, "w") as f:
json.dump(results, f, indent=4)
save_to_pytorch_benchmark_format(args, results)
if __name__ == "__main__":
parser = FlexibleArgumentParser(
description="Benchmark the latency of processing a single batch of "
"requests till completion.")
parser.add_argument("--input-len", type=int, default=32)
parser.add_argument("--output-len", type=int, default=128)
parser.add_argument("--batch-size", type=int, default=8)
parser.add_argument(
"--n",
type=int,
default=1,
help="Number of generated sequences per prompt.",
)
parser.add_argument("--use-beam-search", action="store_true")
parser.add_argument(
"--num-iters-warmup",
type=int,
default=10,
help="Number of iterations to run for warmup.",
)
parser.add_argument("--num-iters",
type=int,
default=30,
help="Number of iterations to run.")
parser.add_argument(
"--profile",
action="store_true",
help="profile the generation process of a single batch",
)
parser.add_argument(
"--profile-result-dir",
type=str,
default=None,
help=("path to save the pytorch profiler output. Can be visualized "
"with ui.perfetto.dev or Tensorboard."),
)
parser.add_argument(
"--output-json",
type=str,
default=None,
help="Path to save the latency results in JSON format.",
)
parser.add_argument(
"--disable-detokenize",
action="store_true",
help=("Do not detokenize responses (i.e. do not include "
"detokenization time in the latency measurement)"),
)
parser = EngineArgs.add_cli_args(parser)
args = parser.parse_args()
main(args)
#gemlite.cache_config(cache_name)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment