Skip to content

Instantly share code, notes, and snippets.

@ita9naiwa
Created August 27, 2025 08:35
Show Gist options
  • Save ita9naiwa/644f9a025d08361b4d1c6412a67e9346 to your computer and use it in GitHub Desktop.
Save ita9naiwa/644f9a025d08361b4d1c6412a67e9346 to your computer and use it in GitHub Desktop.
test_scaled.dot.py
#!/usr/bin/env python3
import torch
import triton
import triton.language as tl
@triton.jit
def scaled_dot_kernel(
# Pointers to matrices
a_ptr, b_ptr, output_ptr,
# Scale pointers
a_scale, b_scale,
# Matrix dimensions
M, N, K,
# Strides
stride_scale: tl.constexpr,
stride_am, stride_ak,
stride_bk, stride_bn,
stride_cm, stride_cn,
# Meta-parameters
BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr, BLOCK_K: tl.constexpr,
):
"""
This kernel is based on the actual mxfp_matmul from test_matmul.py
Uses tt.dot_scaled which should trigger ttg.local_load with f8E5M2 types
"""
pid = tl.program_id(axis=0)
num_pid_m = tl.cdiv(M, BLOCK_M)
pid_m = pid % num_pid_m
pid_n = pid // num_pid_m
offs_am = (pid_m * BLOCK_M + tl.arange(0, BLOCK_M)) % M
offs_bn = (pid_n * BLOCK_N + tl.arange(0, BLOCK_N)) % N
offs_k = tl.arange(0, BLOCK_K)
offs_scale_k = tl.arange(0, BLOCK_K // 32)
# Scale pointers - exact pattern from mxfp_matmul
a_scale_ptr = a_scale + offs_am[:, None] * stride_scale + offs_scale_k[None, :]
b_scale_ptr = b_scale + offs_bn[:, None] * stride_scale + offs_scale_k[None, :]
# Matrix pointers
a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak)
b_ptrs = b_ptr + (offs_k[:, None] * stride_bk + offs_bn[None, :] * stride_bn)
accumulator = tl.zeros((BLOCK_M, BLOCK_N), dtype=output_ptr.dtype.element_ty)
# Main loop - this should trigger ttg.local_load operations
for k in range(0, tl.cdiv(K, BLOCK_K)):
a = tl.load(a_ptrs)
b = tl.load(b_ptrs)
scale_a = tl.load(a_scale_ptr)
scale_b = tl.load(b_scale_ptr)
# This is the key operation that should generate ttg.local_load with f8E5M2
accumulator = tl.dot_scaled(a, scale_a, "e5m2", b, scale_b, "e5m2", accumulator)
a_ptrs += BLOCK_K * stride_ak
b_ptrs += BLOCK_K * stride_bk
a_scale_ptr += BLOCK_K // 32
b_scale_ptr += BLOCK_K // 32
offs_cm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M)
offs_cn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N)
output_ptrs = output_ptr + stride_cm * offs_cm[:, None] + stride_cn * offs_cn[None, :]
c_mask = (offs_cm[:, None] < M) & (offs_cn[None, :] < N)
tl.store(output_ptrs, accumulator, mask=c_mask)
def main():
# Set up matrices - same as test_fp8_matmul.py
M, N, K = 64, 64, 64
device = torch.cuda.current_device()
# Create f8E5M2 inputs - same as test_fp8_matmul.py
a = torch.randn((M, K), dtype=torch.float16, device=device).to(torch.float8_e5m2)
b = torch.randn((K, N), dtype=torch.float16, device=device).to(torch.float8_e5m2)
c = torch.empty((M, N), dtype=torch.float32, device=device)
# Create scale tensors (i8) - similar to the mxfp pattern
# Scales are per 32-element group in K dimension
scale_groups_k = (K + 31) // 32
a_scale = torch.randint(64, 130, (M, scale_groups_k), dtype=torch.uint8, device=device)
b_scale = torch.randint(64, 130, (N, scale_groups_k), dtype=torch.uint8, device=device)
print(f"Input shapes: A={a.shape}, B={b.shape}, C={c.shape}")
print(f"Scale shapes: A_scale={a_scale.shape}, B_scale={b_scale.shape}")
print(f"Input dtypes: A={a.dtype}, B={b.dtype}")
# Grid configuration - same as test_fp8_matmul.py
BLOCK_M, BLOCK_N, BLOCK_K = 32, 32, 32
def grid(META):
return (triton.cdiv(M, BLOCK_M) * triton.cdiv(N, BLOCK_N), )
try:
# Launch kernel - this should trigger the ttg.local_load path that was failing
scaled_dot_kernel[grid](
a, b, c,
a_scale, b_scale,
M, N, K,
a_scale.stride(0), # stride_scale
a.stride(0), a.stride(1),
b.stride(0), b.stride(1),
c.stride(0), c.stride(1),
BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N, BLOCK_K=BLOCK_K,
num_warps=4,
num_ctas=2
)
print("✅ Scaled dot kernel completed successfully!")
print(f"Result shape: {c.shape}")
print(f"Result dtype: {c.dtype}")
print(f"Result range: [{c.min():.3f}, {c.max():.3f}]")
except Exception as e:
print(f"❌ Scaled dot kernel failed: {e}")
import traceback
traceback.print_exc()
if __name__ == "__main__":
main()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment