Created
October 30, 2014 19:53
-
-
Save itguy51/433039eb2e0a07323a28 to your computer and use it in GitHub Desktop.
The Quotient Rule - Proofs (For Green's MAT114 Class)
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
\documentclass[10pt]{article} | |
\pagestyle{plain} | |
\usepackage{amsmath} | |
\usepackage[margin=0.25in]{geometry} | |
\usepackage{parselines} | |
\begin{document} | |
\iffalse | |
Josh Pruim wrote this. For Green's class. In October. | |
\fi | |
\noindent | |
The Limit Definition of a Derivative is as follows | |
\[ | |
f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}. | |
\] | |
The function \textit{f} is defined below | |
\[ | |
f(x) = \frac{g(x)}{h(x)} | |
\] | |
\begin{align*} | |
\text{First, I set up my definition} | |
\\ | |
f'(x) &= \lim_{\Delta x \to 0} \frac{\frac{g(x + \Delta x)}{h(x + \Delta x)} - \frac{g(x)}{h(x)}}{\Delta x}. | |
\\ | |
\text{Rearranging my equations} | |
\\ | |
f'(x) &= \lim_{\Delta x \to 0} \frac{1}{\Delta x} \cdot \frac{h(x+\Delta x) \cdot g(x) - h(x) \cdot g(x + \Delta x)}{g(x + \Delta x) \cdot g(x)} | |
\\ | |
\text{Adding and subtracting } h(x) \cdot g(x) | |
\\ | |
f'(x) &= \lim_{\Delta x \to 0} \frac{1}{\Delta x} \cdot \frac{h(x+\Delta x) \cdot g(x) -h(x) \cdot g(x) + h(x) \cdot g(x) - h(x) \cdot g(x + \Delta x)}{g(x + \Delta x) \cdot g(x)} | |
\\ | |
\text{To rewrite} | |
\\ | |
f'(x) &= \lim_{\Delta x \to 0} \frac{1}{g(x + \Delta x) \cdot g(x)} \cdot \frac{h(x+\Delta x) \cdot g(x) -h(x) \cdot g(x) + h(x) \cdot g(x) - h(x) \cdot g(x + \Delta x)}{\Delta x} | |
\\ | |
\text{Separate and Factor} | |
\\ | |
f'(x) &= \lim_{\Delta x \to 0} \frac{1}{g(x + \Delta x) \cdot g(x)} \cdot g(x) \cdot \frac{h(x+\Delta x) -h(x)}{\Delta x} + h(x) \cdot \frac{ g(x) - g(x + \Delta x)}{\Delta x} | |
\\ | |
\text{Using limits of parts} | |
\\ | |
f'(x) &= \frac{1}{g(x) \cdot g(x)} \cdot g(x) \cdot h'(x) + h(x) \cdot g'(x) | |
\\ | |
\text{Condense and rewrite} | |
\\ | |
f'(x) &= \frac{g(x) \cdot h'(x) + h(x) \cdot g'(x)}{g(x)^2} | |
\\ | |
\text{Thus giving us the Quotient Rule} | |
\end{align*} | |
\end{document} |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
\documentclass[10pt]{article} | |
\pagestyle{plain} | |
\usepackage{amsmath} | |
\usepackage[margin=0.25in]{geometry} | |
\usepackage{parselines} | |
\begin{document} | |
\iffalse | |
Josh Pruim wrote this. For Green's class. In October. | |
\fi | |
\noindent | |
The function \textit{f} is defined below | |
\[ | |
f(x) = \frac{g(x)}{h(x)} | |
\] | |
The Quotient Rule is as follows with respect to \textit{f(x)} | |
\[ | |
f'(x) = \frac{g'(x) \cdot h(x) - g(x) \cdot h'(x)}{h(x)^2} | |
\] | |
\begin{align*} | |
f(x) &= \frac{g(x)}{h(x)} = g(x) \cdot h(x)^{-1} | |
\\ | |
\text{Apply Product Rule} | |
\\ | |
f'(x) &= g'(x) \cdot h(x)^{-1} + g(x) \cdot (h(x)^{-1})' | |
\\ | |
\text{Use Power Rule} | |
\\ | |
f'(x) &= g'(x) \cdot h(x)^{-1} + g(x) \cdot (-1) \cdot h(x)^{-2} \cdot h'(x) | |
\\ | |
\text{This can be rewritten as} | |
\\ | |
f'(x) &= \frac{g'(x)}{h(x)} - \frac{g(x) \cdot h'(x)}{h(x)^2} | |
\\ | |
\text{Multiply by 1 on the left} | |
\\ | |
f'(x) &= (\frac{h(x)}{h(x)}) \cdot \frac{g'(x)}{h(x)} - \frac{g(x) \cdot h'(x)}{h(x)^2} | |
\\ | |
\text{This results in} | |
\\ | |
f'(x) &= \frac{g'(x) \cdot h(x)}{h(x)^2} - \frac{g(x) \cdot h'(x)}{h(x)^2} | |
\\ | |
\text{Consolidate over a common denominator} | |
\\ | |
f'(x) &= \frac{g'(x) \cdot h(x) - g(x) \cdot h'(x)}{h(x)^2} | |
\end{align*} | |
\end{document} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment