Last active
August 24, 2020 04:34
-
-
Save ito4303/03a951bb8b6aaad1857af329069680e1 to your computer and use it in GitHub Desktop.
Testing a hidden Markov model function incorporated into CmdStan 2.24
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# | |
# HMM Test for CmdStan 2.24 | |
# | |
library(rstan) | |
options(mc.cores = parallel::detectCores()) | |
library(cmdstanr) | |
set_cmdstan_path("/usr/local/cmdstan") | |
library(extraDistr) | |
# transition probability | |
gam <- matrix(c(0.9, 0.25, 0.1, 0.75), 2, 2) | |
# emission probability | |
phi <- matrix(c(0.7, 0.05, 0.3, 0.95), 2, 2) | |
# length of the time series | |
N <- 1000 | |
# generate data | |
# x: latent state {1, 2} | |
# x0: initial latent state {1, 2} | |
# y: output {1, 2} | |
# log_omega: log probability(y | x=k, phi) | |
set.seed(123) | |
y <- x <- vector("numeric", N) | |
x0 <- 1 | |
x[1] <- rcat(1, gam[x0, ]) | |
for (n in 2:N) | |
x[n] <- rcat(1, gam[x[n - 1], ]) | |
y <- rcat(N, phi[x, ]) | |
# fitting | |
data <- list(N = N, Y = y) | |
model <- cmdstanr::cmdstan_model("hmm_test3.stan") | |
init_fun <- function() { | |
phi1 <- runif(1, 0.8, 1) | |
phi2 <- runif(1, 0.8, 1) | |
rho1 <- runif(1, 0, 1) | |
list(phi = matrix(c(phi1, 1 - phi1, 1 - phi2, phi2), 2, 2, byrow = TRUE), | |
rho = c(rho1, 1 - rho1)) | |
} | |
fit <- model$sample(data, init = init_fun, chains = 4, | |
iter_warmup = 1000, iter_sampling = 1000) | |
fit$summary(variables = c("Gamma", "phi", "rho")) | |
stanfit <- rstan::read_stan_csv(fit$output_files()) | |
traceplot(stanfit, pars = c("p", "phi", "rho")) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
data { | |
int N; | |
// int K = 2; | |
int<lower = 1, upper = 2> Y[N]; | |
} | |
parameters { | |
simplex[2] p[2]; // transition probabilities | |
simplex[2] phi[2]; // emission probabilities | |
simplex[2] rho; // initial state probabilities | |
} | |
transformed parameters { | |
matrix<lower = 0, upper = 1>[2, 2] Gamma | |
= append_row(p[1]', p[2]'); | |
} | |
model { | |
matrix[2, N] log_omega; | |
for (n in 1:N) | |
for (x in 1:2) | |
log_omega[x, n] = log(phi[x][Y[n]]); | |
target += hmm_marginal(log_omega, Gamma, rho); | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment