Created
April 8, 2022 06:36
-
-
Save ito4303/a41a75a5899ce5ad6d877481d6ab4862 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# cf. Kuchibhotla et al. (2022) | |
# 10.1146/annurev-statistics-100421-044639 | |
library(MASS) | |
library(AICcmodavg) | |
library(parallel) | |
# Set number of CPU cores | |
options(cl.cores = 8) | |
# Number of replications | |
R <- 10000 | |
# Sample size | |
N <- 50 | |
set.seed(123) | |
data <- lapply(1:R, function(i) { | |
x <- mvrnorm(N, c(0, 0, 0), | |
matrix(c(1, 0, 0, | |
0, 1, 0, | |
0, 0, 1), | |
3, 3)) | |
y <- rnorm(N, 0, 3) | |
data.frame(x1 = x[, 1], x2 = x[, 2], x3 = x[, 3], y = y) | |
}) | |
cl <- makeCluster(getOption("cl.cores", 2)) | |
rlist <- clusterMap(cl, function(d) { | |
m <- list() | |
m[[1]] <- glm(y ~ 1, data = d) | |
m[[2]] <- glm(y ~ x1, data = d) | |
m[[3]] <- glm(y ~ x2, data = d) | |
m[[4]] <- glm(y ~ x3, data = d) | |
m[[5]] <- glm(y ~ x1 + x2, data = d) | |
m[[6]] <- glm(y ~ x1 + x3, data = d) | |
m[[7]] <- glm(y ~ x2 + x3, data = d) | |
m[[8]] <- glm(y ~ x1 + x2+ x3, data = d) | |
aic <- sapply(1:8, function(i) AIC(m[[i]])) | |
aicc <- sapply(1:8, function(i) AICcmodavg::AICc(m[[i]])) | |
bic <- sapply(1:8, function(i) BIC(m[[i]])) | |
coef <- sapply(1:8, function(i) coef(m[[i]])) | |
list(AIC = aic, AICc = aicc, BIC = bic, coef = coef) | |
}, data) | |
stopCluster(cl) | |
# smallest-AIC model | |
min_aic <- sapply(1:R, function(i) which.min(rlist[[i]]$AIC)) | |
summary(factor(min_aic)) | |
# coefficient of x1 in the smallest-AIC models which contain x1 | |
coef_x1 <- sapply(1:R, function(i) { | |
ifelse(min_aic[i] %in% c(2, 5, 6, 8), | |
rlist[[i]]$coef[[min_aic[i]]]["x1"], | |
as.numeric(NA)) | |
}) | |
coef_x1 <- coef_x1[!is.na(coef_x1)] | |
hist(coef_x1, main = "In the \"best\" models which contain x1", | |
xlab = "Coefficient of x1") | |
# smallest-AICc model | |
min_aicc <- sapply(1:R, function(i) which.min(rlist[[i]]$AICc)) | |
summary(factor(min_aicc)) | |
# smallest-BIC model | |
min_bic <- sapply(1:R, function(i) which.min(rlist[[i]]$BIC)) | |
summary(factor(min_bic)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment