Last active
June 5, 2017 19:23
-
-
Save ivan-krukov/0fb0622a864e3592f022fdd4b314346f to your computer and use it in GitHub Desktop.
Volcano plots
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# bootstrap.R | |
cat("Loading packages\n") | |
library(tidyverse) | |
library(RefFreeEWAS) | |
library(qvalue) | |
cat("Loading data\n") | |
load("pdat.merge.rdata") | |
load("betas.rdata") | |
cat("Filtering data\n") | |
phenotypes <- pdat.merge[, -10] %>% # drop extra 'Sex' column | |
rownames_to_column("patient") %>% # add patient column | |
filter(Tissue == "BUFFY") %>% # only blood samples | |
filter(!is.na(PSAS1) & !is.na(Education) & !is.na(income)) | |
save(phenotypes, files="phenotypes.rdata") | |
measurements <- betas[, phenotypes$patient] # this is not necessary | |
cat("Using", nrow(phenotypes), "patients and", nrow(measurements), "markers\n") | |
save(measurements, files="measurements.rdata") | |
cat("Determening degrees of freedom\n") | |
rmt <- EstDimRMT(measurements) | |
cat("Estimated dof for markers", rmt$dim, "\n") | |
cat("Building model\n"); | |
m <- model.matrix(patient ~ (PSAS1 * Sex) + MALE_RecentEvent_Score + income + Education + Ethnicity, | |
data = phenotypes) | |
rfm <- RefFreeEwasModel(measurements, m, K = rmt$dim) | |
n_bootstrap <- 100 | |
cat("Bootstrapping n=", n_bootstrap, "\n") | |
b <- BootRefFreeEwasModel(rfm, nboot = n_bootstrap) | |
cat("Summarizing bootstraps\n") | |
res <- summary(b) | |
save(res, file = paste0("bootstrap_", n_bootstrap,".rdata")) | |
cat("Done\n") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
volcano_plot <- function(bootstrap_summary, variable) { | |
mean_beta <- res[, variable, "B", "mean"] | |
sd_beta <- res[, variable, "B", "sd"] | |
p_value <- pt(mean_beta / sd_beta, dof1) | |
q_value <- qvalue(p_value) | |
jpeg(paste0("volcano_", variable, ".jpg"), width = 1000, height = 1000) | |
print(data_frame( | |
gene = rownames(measurements), | |
variable = mean_beta, | |
p_value = p_value, | |
q_value = q_value$qvalues, | |
logq = -log10(q_value), | |
significant = logq > 2) %>% | |
ggplot(aes(x = variable, y = logq)) + | |
geom_point(aes(color = significant)) + | |
geom_text(aes(label = ifelse(significant, gene, '')), vjust = 0, hjust = 0, angle = 45) + | |
scale_color_brewer(palette = "Set1")) | |
dev.off() | |
} | |
# load `res` from bootstraping: | |
load("bootstrap_100.rdata") | |
# load other data | |
load("phenotypes.rdata") | |
load("measurements.rdata") | |
volcano_plot(res, "PSAS1:Sex") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment