Skip to content

Instantly share code, notes, and snippets.

View ivancorrales's full-sized avatar
🐾
Doing what I love to do!

Iván Corrales Solera ivancorrales

🐾
Doing what I love to do!
View GitHub Profile
@ivancorrales
ivancorrales / raspberry-pi-plex-server.md
Created November 29, 2021 20:09 — forked from jc-torresp/raspberry-pi-plex-server.md
Setup a Raspberry Pi Plex Media Server (Including external storage media and Windows to Raspbian migration)

Raspberry Pi Plex Server

Installation

Ensure our operating system is entirely up to date:

sudo apt-get update
sudo apt-get upgrade
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
(define
(problem waiter-service)
(:domain restaurant)
; objects with types
(:objects
w1 w2 w3 - waiter
g1 g2 g3 g4 g5 g6 g7 g8 - group
t1 t2 t3 t4 t5 - table
)
(define
(problem waiter-service)
(:domain restaurant)
; objects with types
(:objects
w1 w2 - waiter
g1 g2 - group
t1 t2 - table
)
;Header and description
(define (domain restaurant)
;remove requirements that are not needed
(:requirements :typing :strips :fluents :durative-actions :timed-initial-literals :typing :conditional-effects :negative-preconditions :duration-inequalities :equality)
(:types waiter group table)
; un-comment following line if constants are needed
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# Hyperparameters for VOC finetuning
# python train.py --batch 64 --weights yolov5m.pt --data VOC.yaml --img 512 --epochs 50
# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
# Hyperparameter Evolution Results
# Generations: 306
# P R mAP.5 mAP.5:.95 box obj cls
# Metrics: 0.6 0.936 0.896 0.684 0.0115 0.00805 0.00146
# Path will be the root of train/val/test values
path: /mydrive/tutorials/tutorial_object_detection/dataset
train: [images/train/, labels/train/]
val: [images/val/,labels/val/]
# number of classes
nc: 2
# class names
# Parameters
nc: 2 # number of classes
depth_multiple: 0.67 # model depth multiple
width_multiple: 0.75 # layer channel multiple
anchors:
- [10,13, 16,30, 33,23] # P3/8
- [30,61, 62,45, 59,119] # P4/16
- [116,90, 156,198, 373,326] # P5/32
scenario "a user registration fails because required fields are not provcided" {
examples = [
{ fullName ="", username = "", password =""},
{ fullName ="Jane Doe", username = "", password =""},
{ fullName ="Jane Doe", username = "[email protected]", password =""},
{ fullName ="Jane Doe", username = "", password ="secret"},
]
when "register the user" {
scenario "happy path" {
given "my user details" {
set user {
value = {
fullName = "John Smith"
username = "[email protected]"
password = "secret"
}
}
}