Last active
November 5, 2016 20:21
-
-
Save ivaninkv/340dcda3042a3b8b25a1949173c595f2 to your computer and use it in GitHub Desktop.
Sbarbank task 2
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
rm(list = ls()) | |
gc() | |
# загрузка библиотек | |
library(data.table) | |
library(xgboost) | |
library(caret) | |
# загрузка данных | |
tran <- fread('transactions.csv') | |
cust <- fread('customers_gender_train.csv') | |
mcc <- fread('tr_mcc_codes.csv') | |
tr_type <- fread('tr_types.csv') | |
# трансформируем данные | |
mcc$mcc_code <- paste('mcc', as.character(mcc$mcc_code), sep = '_') | |
tran[, c('day', 'time') := tstrsplit(tr_datetime, ' ', fixed = TRUE, type.convert = TRUE)] | |
tran[, tr_datetime := NULL] | |
tran <- tran[amount < 0] | |
# готовим train_grid | |
group_data <- tran[, .(amount = sum(amount)), by = c('day', 'mcc_code')] | |
train_grid <- as.data.table(expand.grid(mcc_code = unique(tran$mcc_code), day = unique(tran$day))) | |
train_grid <- merge(train_grid, group_data, by = c('day', 'mcc_code'), all.x = T) | |
train_grid[is.na(amount), amount := 0] | |
print(sum(is.na(train_grid$amount))) | |
setkey(train_grid, day, mcc_code) | |
# готовим test_grid | |
test_grid <- as.data.table(expand.grid(unique(tran$mcc_code), 1:30 + max(tran$day))) | |
colnames(test_grid) <- c('mcc_code', 'day') | |
test_grid[, amount := NA] | |
setkey(test_grid, day, mcc_code) | |
# сольем и создадим фичи | |
all_data <- rbind(train_grid, test_grid) | |
lag_int <- length(unique(all_data$mcc_code)) | |
for (i in 30:60) { | |
all_data[, paste('day', i, sep = '_') := shift(all_data$amount, lag_int * i)] | |
} | |
#train_grid <- na.omit(train_grid) | |
all_data[, dw := day %% 7] | |
all_data[, dw := dw + 1] | |
# делим обратно на трейн и тест | |
train_grid <- all_data[!is.na(amount)] | |
train_grid <- na.omit(train_grid) | |
test_grid <- all_data[is.na(amount)] | |
# готовим test_grid | |
#test_grid <- as.data.table(expand.grid(unique(tran$mcc_code), 1:30 + max(tran$day))) | |
#colnames(test_grid) <- c('mcc_code', 'day') | |
#for (i in 30:60) { | |
# res <- unlist(apply(test_grid, 1, function(x) | |
# ifelse(length(group_data[day == (x[2] - i) & | |
# mcc_code == x[1], amount]) == 0, 0, group_data[day == (x[2] - i) & | |
# mcc_code == x[1], amount]))) | |
# test_grid[, paste('day', as.character(i), sep = '_')] <- res | |
#} | |
#test_grid <- as.data.table(test_grid) | |
#test_grid[, dw := day %% 7] | |
#test_grid[, dw := dw + 1] | |
#setkey(test_grid, day, mcc_code) | |
# запишем промежуточный результат | |
write.csv(train_grid, 't2_train_grid.csv', row.names = F, quote = F) | |
write.csv(test_grid, 't2_test_grid.csv', row.names = F, quote = F) | |
#train_grid <- fread('t2_train_grid.csv') | |
#test_grid <- fread('t2_test_grid.csv') | |
X <- train_grid[, -c('day', 'mcc_code', 'amount'), with = F] | |
dw <- X$dw | |
X <- log(-X + 1) | |
X$dw <- dw | |
#y <- train_grid$amount | |
y <- log(-train_grid$amount + 500) | |
X_pred <- test_grid[, -c('day', 'mcc_code', 'amount'), with = F] | |
dw <- X_pred$dw | |
X_pred <- log(-X_pred + 1) | |
X_pred$dw <- dw | |
#xgboost | |
xgbGrid <- expand.grid( | |
eta = 0.2, | |
nrounds = 100,#OK | |
max_depth = 5, #OK | |
colsample_bytree = 0.2, #OK | |
min_child_weight = 13, #OK | |
gamma = 14 #OK | |
) | |
fitControl <- trainControl(method = 'repeatedcv', number = 5, repeats = 3, verboseIter = TRUE) | |
m1 <- train(X, y, | |
method = 'xgbTree', | |
trControl = fitControl, | |
metric = 'rmse', | |
tuneGrid = xgbGrid | |
) | |
m1$bestTune | |
k <- 512 | |
param <- list( | |
eta = 0.2/k, | |
max_depth = 5, | |
colsample_bytree = 0.2, | |
min_child_weight = 13, | |
gamma = 14, | |
subsample = 0.7, | |
objective = 'reg:linear', | |
eval_metric = "rmse" | |
) | |
model <- xgboost(data = as.matrix(X), label = y, params = param, nrounds = 100*k, print_every_n = 500, early_stopping_rounds = 100) | |
#xgb.save(model, 'task2.model') | |
model <- xgb.load('task2.model') | |
f_imp <- xgb.importance(feature_names = colnames(as.matrix(X)), model = model) | |
xgb.plot.importance(f_imp[Gain > 0.01]) | |
res <- exp(predict(model, as.matrix(X_pred))) - 500 | |
test_grid[, volume := res] | |
ans <- test_grid[, .(mcc_code, day, volume)] | |
write.csv(ans, 'task2_finish.csv', row.names = F, quote = F) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment