-
-
Save iwouldnot/20e3b6cdc71e3561832d63201db2f1df to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import time | |
from tqdm import tnrange, tqdm | |
from bokeh.plotting import figure, output_notebook, show | |
def solve(a): | |
diag = np.diag(np.fliplr(a)) # n + log(n) | |
min_elem_index = diag.argmin() # n^2 | |
avrg_sum = a[a < 0].mean() # nlog(n) | |
min_elem_row, min_elem_columns = min_elem_index, a.shape[1] - min_elem_index - 1 # 5 | |
a = a.astype(float) # n | |
a[min_elem_row, min_elem_columns] = avrg_sum # 1 | |
# n + log(n) + n^2 + nlog(n) + 5 + n + 1 = n2 + (1+n)log(n) + 2n + 6 | |
size_values = list(range(100, 900, 200)) + list(range(1000, 19000, 1000)) | |
timings = [] | |
print('there') | |
for size in size_values: | |
arr = np.random.randint(-10000, 10000, (size, size)) | |
start_time = time.time() | |
solve(arr) | |
end_time = time.time() | |
timings.append(end_time - start_time) | |
print('here') | |
# output_notebook() | |
print(there) | |
print(timings) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment