-
-
Save ixtel/d3f16e7c8208550aa17f to your computer and use it in GitHub Desktop.
Uses TFIDF to extract relevant sentences from text. Based off of Charlie Greenbacker's example from "A smattering of NLP with Python" presentation he gave a while ago.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# summarize | |
# Uses TFIDF to extract relevent sentences from text. | |
# | |
# Author: Benjamin Bengfort <[email protected]> | |
# Created: Sun Oct 26 16:06:36 2014 -0400 | |
# | |
# ID: summarize.py [] [email protected] $ | |
""" | |
Uses TFIDF to extract relevent sentences from text. | |
Based off of Charlie Greenbacker's example from "A smattering of NLP with | |
Python" presentation he gave a while ago. | |
""" | |
########################################################################## | |
## Imports | |
########################################################################## | |
from __future__ import division | |
import re | |
import sys | |
import math | |
import nltk | |
import time | |
import random | |
from operator import itemgetter | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
########################################################################## | |
## Module Fixtures | |
########################################################################## | |
lemmatizer = nltk.stem.WordNetLemmatizer() | |
stopwords = set(nltk.corpus.stopwords.words('english')) | |
def timeit(func): | |
def wrapper(*args, **kwargs): | |
start = time.time() | |
result = func(*args, **kwargs) | |
finit = time.time() | |
return result, finit-start | |
return wrapper | |
def tokenize(text): | |
for token in nltk.word_tokenize(text): | |
token = token.lower() | |
if token in stopwords or not token.isalpha(): | |
continue | |
yield lemmatizer.lemmatize(token) | |
class TfidfSummarizer(object): | |
def __init__(self, corpus, verbose=2): | |
self.corpus = corpus | |
self.tokenizer = tokenize | |
self.vectorizer = TfidfVectorizer(tokenizer=self.tokenizer, decode_error='ignore') | |
self.tdm = None | |
self.features = None | |
self.initialize_features(verbose) | |
def initialize_features(self, verbose=1): | |
""" | |
Initializes the features and prints time taken if verbose > 0. | |
""" | |
@timeit | |
def inner(self): | |
# articles = dict((fileid, self.corpus.raw(fileid)) for fileid in self.corpus.fileids()) | |
return self.vectorizer.fit_transform(self.corpus.raw(fileid) for fileid in self.corpus.fileids()) | |
self.tdm, delta = inner(self) | |
self.features = self.vectorizer.get_feature_names() | |
if verbose > 0: | |
print "TDM contains %i terms and %i documents." % (len(self.features), self.tdm.shape[0]) | |
if verbose > 1: | |
print " First term: %s" % self.features[0] | |
print " Last term: %s" % self.features[-1] | |
for idx in xrange(0, 4): | |
print " Random term: %s" % random.choice(self.features[1:-2]) | |
if verbose > 0: | |
print "Featurization took %0.3f seconds\n" % delta | |
def score_sentences(self, fileid): | |
fileidx = self.corpus.fileids().index(fileid) | |
for sent in nltk.sent_tokenize(self.corpus.raw(fileid)): | |
score = 0 | |
for token in self.tokenizer(sent): | |
if token not in self.features: continue | |
score += self.tdm[fileidx, self.features.index(token)] | |
yield score, sent | |
def summarize(self, fileid): | |
""" | |
Returns a summary for the given fileid | |
""" | |
scores = list(self.score_sentences(fileid)) | |
sumlen = int(math.ceil(len(scores) / 2 )) | |
scores.sort(key=itemgetter(0)) | |
return scores[:sumlen] | |
if __name__ == '__main__': | |
summarizer = TfidfSummarizer(nltk.corpus.reuters) | |
article = random.choice(nltk.corpus.reuters.fileids()) | |
print "#"*75 | |
print "## SUMMARY" | |
print "#"*75 | |
for sent in summarizer.summarize(article): | |
print sent[1] | |
print "#"*75 | |
print "## ORIGINAL" | |
print "#"*75 | |
print nltk.corpus.reuters.raw(article) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment