Created
August 3, 2021 11:11
-
-
Save j20232/a4688ab8a68c08cee2f08f3223ea672c to your computer and use it in GitHub Desktop.
convergence_test_optimized_with_torch_and_np.py
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import matplotlib.pyplot as plt | |
import torch | |
def func(x): | |
return 1e-4 * ((x - 6) ** 3) + 1e-4 * ((x - 5) ** 4) + 1e-2 * ((np.sin(x * 0.1) - 3) ** 2) | |
def torch_func(x): | |
return 1e-4 * ((x - 6) ** 3) + 1e-4 * ((x - 5) ** 4) + 1e-2 * ((torch.sin(x * 0.1) - 3) ** 2) | |
class FiniteDiff(torch.autograd.Function): | |
@staticmethod | |
def forward(ctx, input): | |
ctx.save_for_backward(input) | |
np_x = input.cpu().detach().numpy() | |
y = func(np_x) # numpy implementation | |
t = torch.from_numpy(y) | |
return t | |
@staticmethod | |
def backward(ctx, grad_output): | |
h = 1e-5 | |
input, = ctx.saved_tensors | |
np_x = input.cpu().detach().numpy() | |
# finite difference (central differences) | |
grad = (func(np_x + h) - func(np_x)) / (2 * h) + (func(np_x) - func(np_x - h)) / (2 * h) # numpy implementation | |
grad = torch.from_numpy(grad) | |
return grad_output * grad | |
if __name__ == "__main__": | |
np_x = np.linspace(4, 10, 100) | |
np_y = func(np_x) ** 4 + func(np_x) ** 3 | |
tgt = torch.tensor([0.0]) | |
max_esr = 10 | |
epochs = 10000 | |
# auto diff: red | |
x = torch.tensor([0.0], requires_grad=True) | |
optimizer = torch.optim.Adam([x], lr=1e-1) | |
esr = 0 | |
best_loss = 9999 | |
loss_fn = torch.nn.MSELoss() | |
for e in range(epochs): | |
optimizer.zero_grad() | |
val = torch_func(x) ** 4 + torch_func(x) ** 3 | |
loss = loss_fn(val, tgt) | |
loss.backward() | |
optimizer.step() | |
loss_val = loss.cpu().detach().numpy() | |
if best_loss > loss_val: | |
esr = 0 | |
best_loss = loss_val | |
v = val.cpu().detach().numpy() | |
else: | |
esr += 1 | |
if esr >max_esr: | |
break | |
ad_v = x.cpu().detach().numpy() | |
# finite diff: yellow | |
x = torch.tensor([0.0], requires_grad=True) | |
optimizer = torch.optim.Adam([x], lr=1e-1) | |
esr = 0 | |
best_loss = 9999 | |
loss_fn = torch.nn.MSELoss() | |
fd_func = FiniteDiff.apply | |
for e in range(epochs): | |
optimizer.zero_grad() | |
val = fd_func(x) ** 4 + fd_func(x) ** 3 | |
loss = loss_fn(val, tgt) | |
loss.backward() | |
optimizer.step() | |
loss_val = loss.cpu().detach().numpy() | |
if best_loss > loss_val: | |
esr = 0 | |
best_loss = loss_val | |
v = val.cpu().detach().numpy() | |
else: | |
esr += 1 | |
if esr >max_esr: | |
break | |
fd_v = x.cpu().detach().numpy() | |
plt.title("Convergence test") | |
plt.plot(np_x, np_y) | |
plt.plot(ad_v, func(ad_v) ** 4 + func(ad_v) ** 3, marker="o", color="red", label="Automatic differentiation") | |
plt.plot(fd_v, func(fd_v) ** 4 + func(fd_v) ** 3, marker="*", color="yellow", label="Finite difference") | |
plt.legend() | |
plt.xlabel("x") | |
plt.ylabel("f(x)") | |
plt.show() | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment