-
-
Save jab/2c9d9c60647d960cb202 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#lang racket | |
;; | |
;; These are some examples of different ways to compute factorials | |
;; using various paradigms and features provided by Racket. There | |
;; are more options available in packages which are not imported | |
;; by default, but that rabbit hole goes very deep indeed. | |
;; | |
;; Comments and suggestions welcome! | |
;; [email protected] | |
;; | |
(define (apply-factorial n) | |
(apply * (build-list n add1))) | |
(define (continuation-factorial n) | |
(letrec | |
([f (λ (n cc) | |
(if (zero? n) | |
(cc 1) | |
(f (sub1 n) | |
(λ (a) | |
(cc (* n a))))))]) | |
(call-with-current-continuation | |
(λ (cc) | |
(f n cc))))) | |
(define (do-factorial n) | |
(do ([i 1 (add1 i)] | |
[a 1 (* i a)]) | |
((> i n) a))) | |
(define (fold-factorial n) | |
(foldl (λ (i a) | |
(* i a)) | |
1 | |
(build-list n add1))) | |
(define (for-factorial n) | |
(for/product ([i (in-range 1 (add1 n))]) | |
i)) | |
(define (generator-factorial n) | |
(let ([g (let ([i 0] | |
[a 1]) | |
(λ () | |
(begin0 | |
a | |
(set! i (add1 i)) | |
(set! a (* i a)))))]) | |
(for/last ([i (in-range (add1 n))]) | |
(g)))) | |
(define (inc-dec-factorial n) | |
(letrec | |
([f (λ (a i) | |
(if (zero? i) | |
a | |
(f (g a a i) (sub1 i))))] | |
[g (λ (a b j) | |
(if (zero? j) | |
a | |
(g (h a b) b (sub1 j))))] | |
[h (λ (a k) | |
(if (zero? k) | |
a | |
(h (add1 a) (sub1 k))))]) | |
(if (zero? n) | |
1 | |
(f 1 (sub1 n))))) | |
(define lazy-factorial | |
(letrec ([f (λ (i [a 1]) | |
(lazy | |
(if (zero? i) | |
a | |
(f (sub1 i) | |
(* a i)))))]) | |
(λ (n) | |
(force | |
(f n))))) | |
(define library-factorial | |
(dynamic-require | |
'math/number-theory | |
'factorial | |
(λ () | |
(λ (n) | |
(error "not available in this version of Racket"))))) | |
(define-syntax (macro-factorial stx) | |
(syntax-case stx () | |
[(_ 0) #'1] | |
[(_ n) | |
#`(* n (macro-factorial | |
#,(sub1 (syntax->datum #'n))))])) | |
(define memoized-factorial | |
(let ([cache (make-hasheqv '((0 . 1)))]) | |
(λ (n) | |
(hash-ref! | |
cache | |
n | |
(λ () | |
(* n (memoized-factorial (sub1 n)))))))) | |
(define pattern-matching-factorial | |
(match-lambda | |
[0 1] | |
[(? positive? n) | |
(* n (pattern-matching-factorial (sub1 n)))])) | |
(define (recursive-factorial n) | |
(if (zero? n) | |
1 | |
(* n (recursive-factorial (sub1 n))))) | |
(define sequence-factorial | |
(let ([factorial-sequence | |
(make-do-sequence | |
(thunk | |
(values | |
cdr | |
(λ (pos) | |
(cons (add1 (car pos)) | |
(* (car pos) (cdr pos)))) | |
'(1 . 1) | |
#f | |
#f | |
#f)))]) | |
(λ (n) | |
(sequence-ref factorial-sequence n)))) | |
(define stream-factorial | |
(let ([factorial-stream | |
(let loop ([i 1] | |
[a 1]) | |
(stream-cons | |
a | |
(loop (add1 i) (* a i))))]) | |
(λ (n) | |
(stream-ref factorial-stream n)))) | |
(define (tail-recursive-factorial n) | |
(let loop ([i n] | |
[result 1]) | |
(cond | |
[(zero? i) result] | |
[else (loop (sub1 i) | |
(* result i))]))) | |
(define y-factorial | |
((λ (f) | |
((λ (g) | |
(f (λ (x) | |
((g g) x)))) | |
(λ (g) | |
(f (λ (x) | |
((g g) x)))))) | |
(λ (f) | |
(λ (n) | |
(if (zero? n) | |
1 | |
(* n (f (sub1 n)))))))) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment