Skip to content

Instantly share code, notes, and snippets.

@jackdoerner
Last active March 1, 2023 01:04
Show Gist options
  • Save jackdoerner/3dc8ece00deea604b3ae to your computer and use it in GitHub Desktop.
Save jackdoerner/3dc8ece00deea604b3ae to your computer and use it in GitHub Desktop.
Riesz Pyramid Creation and Reconstruction in Python
"""
riesz_pyramid.py
Conversion between Riesz and Laplacian image pyramids
Based on the data structures and methodoligies described in:
Riesz Pyramids for Fast Phase-Based Video Magnification
Neal Wadhwa, Michael Rubinstein, Fredo Durand and William T. Freeman
Computational Photography (ICCP), 2014 IEEE International Conference on
Copyright (c) 2016 Jack Doerner
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""
import numpy, math
import scipy, scipy.signal
#riesz_band_filter = numpy.asarray([[-0.5, 0, 0.5]])
#riesz_band_filter = numpy.asarray([[-0.2,-0.48, 0, 0.48,0.2]])
riesz_band_filter = numpy.asarray([[-0.12,0,0.12],[-0.34, 0, 0.34],[-0.12,0,0.12]])
def laplacian_to_riesz(pyr):
newpyr = {'I':pyr[:-1], 'R1':[], 'R2':[]}
for ii in range(len(pyr) - 1):
newpyr['R1'].append( scipy.signal.convolve2d(pyr[ii], riesz_band_filter, mode='same', boundary='symm') )
newpyr['R2'].append( scipy.signal.convolve2d(pyr[ii], riesz_band_filter.T, mode='same', boundary='symm') )
newpyr['base'] = pyr[-1]
return newpyr
def riesz_to_spherical(pyr):
newpyr = {'A':[],'theta':[],'phi':[],'Q':[],'base':pyr['base']}
for ii in range(len(pyr['I']) ):
I = pyr['I'][ii]
R1 = pyr['R1'][ii]
R2 = pyr['R2'][ii]
A = numpy.sqrt(I*I + R1*R1 + R2*R2)
theta = numpy.arctan2(R2,R1)
Q = R1 * numpy.cos(theta) + R2 * numpy.sin(theta)
phi = numpy.arctan2(Q,I)
newpyr['A'].append( A )
newpyr['theta'].append( theta )
newpyr['phi'].append( phi )
newpyr['Q'].append( Q )
return newpyr
def riesz_spherical_to_laplacian(pyr):
newpyr = []
for ii in range(len(pyr['A'])):
newpyr.append( pyr['A'][ii] * numpy.cos( pyr['phi'][ii] ) )
newpyr.append(pyr['base'])
return newpyr
import numpy
def symmetrical_boundary(img):
#manually set up a symmetrical boundary condition so we can use fftconvolve
#but avoid edge effects
(h,w) = img.shape
imgsymm = numpy.empty((h*2, w*2))
imgsymm[h/2:-(h+1)/2, w/2:-(w+1)/2] = img.copy()
imgsymm[0:h/2, 0:w/2] = img[0:h/2, 0:w/2][::-1,::-1].copy()
imgsymm[-(h+1)/2:, -(w+1)/2:] = img[-(h+1)/2:, -(w+1)/2:][::-1,::-1].copy()
imgsymm[0:h/2, -(w+1)/2:] = img[0:h/2, -(w+1)/2:][::-1,::-1].copy()
imgsymm[-(h+1)/2:, 0:w/2] = img[-(h+1)/2:, 0:w/2][::-1,::-1].copy()
imgsymm[h/2:-(h+1)/2, 0:w/2] = img[:, 0:w/2][:,::-1].copy()
imgsymm[h/2:-(h+1)/2, -(w+1)/2:] = img[:, -(w+1)/2:][:,::-1].copy()
imgsymm[0:h/2, w/2:-(w+1)/2] = img[0:h/2, :][::-1,:].copy()
imgsymm[-(h+1)/2:, w/2:-(w+1)/2] = img[-(h+1)/2:, :][::-1,:].copy()
return imgsymm
"""
rp_laplacian_like.py
Conversion between image and laplacian-like pyramids
Based on the data structures and methodoligies described in:
Riesz Pyramids for Fast Phase-Based Video Magnification
Neal Wadhwa, Michael Rubinstein, Fredo Durand and William T. Freeman
Computational Photography (ICCP), 2014 IEEE International Conference on
Copyright (c) 2016 Jack Doerner
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""
import numpy, cv2, scipy.signal
from rp_boundary import *
lowpass = numpy.asarray([
[-0.0001, -0.0007, -0.0023, -0.0046, -0.0057, -0.0046, -0.0023, -0.0007, -0.0001],
[-0.0007, -0.0030, -0.0047, -0.0025, -0.0003, -0.0025, -0.0047, -0.0030, -0.0007],
[-0.0023, -0.0047, 0.0054, 0.0272, 0.0387, 0.0272, 0.0054, -0.0047, -0.0023],
[-0.0046, -0.0025, 0.0272, 0.0706, 0.0910, 0.0706, 0.0272, -0.0025, -0.0046],
[-0.0057, -0.0003, 0.0387, 0.0910, 0.1138, 0.0910, 0.0387, -0.0003, -0.0057],
[-0.0046, -0.0025, 0.0272, 0.0706, 0.0910, 0.0706, 0.0272, -0.0025, -0.0046],
[-0.0023, -0.0047, 0.0054, 0.0272, 0.0387, 0.0272, 0.0054, -0.0047, -0.0023],
[-0.0007, -0.0030, -0.0047, -0.0025, -0.0003, -0.0025, -0.0047, -0.0030, -0.0007],
[-0.0001, -0.0007, -0.0023, -0.0046, -0.0057, -0.0046, -0.0023, -0.0007, -0.0001]
])
highpass = numpy.asarray([
[0.0000, 0.0003, 0.0011, 0.0022, 0.0027, 0.0022, 0.0011, 0.0003, 0.0000],
[0.0003, 0.0020, 0.0059, 0.0103, 0.0123, 0.0103, 0.0059, 0.0020, 0.0003],
[0.0011, 0.0059, 0.0151, 0.0249, 0.0292, 0.0249, 0.0151, 0.0059, 0.0011],
[0.0022, 0.0103, 0.0249, 0.0402, 0.0469, 0.0402, 0.0249, 0.0103, 0.0022],
[0.0027, 0.0123, 0.0292, 0.0469, -0.9455, 0.0469, 0.0292, 0.0123, 0.0027],
[0.0022, 0.0103, 0.0249, 0.0402, 0.0469, 0.0402, 0.0249, 0.0103, 0.0022],
[0.0011, 0.0059, 0.0151, 0.0249, 0.0292, 0.0249, 0.0151, 0.0059, 0.0011],
[0.0003, 0.0020, 0.0059, 0.0103, 0.0123, 0.0103, 0.0059, 0.0020, 0.0003],
[0.0000, 0.0003, 0.0011, 0.0022, 0.0027, 0.0022, 0.0011, 0.0003, 0.0000]
])
def getsize(img):
h, w = img.shape[:2]
return w, h
def build_laplacian(img, minsize=2, convolutionThreshold=500, dtype=numpy.float64):
img = dtype(img)
levels = []
while (min(img.shape) > minsize):
if (img.size < convolutionThreshold):
convolutionFunction = scipy.signal.convolve2d
else:
convolutionFunction = scipy.signal.fftconvolve
w, h = getsize(img)
symmimg = symmetrical_boundary(img)
hp_img = convolutionFunction(symmimg, highpass, mode='same')[h/2:-(h+1)/2,w/2:-(w+1)/2]
lp_img = convolutionFunction(symmimg, lowpass, mode='same')[h/2:-(h+1)/2,w/2:-(w+1)/2]
levels.append(hp_img)
img = cv2.pyrDown(lp_img)
levels.append(img)
return levels
def collapse_laplacian(levels, convolutionThreshold=500):
img = levels[-1]
for ii in range(len(levels)-2,-1,-1):
lev_img = levels[ii]
img = cv2.pyrUp(img, dstsize=getsize(lev_img))
if (img.size < convolutionThreshold):
convolutionFunction = scipy.signal.convolve2d
else:
convolutionFunction = scipy.signal.fftconvolve
w, h = getsize(img)
symmimg = symmetrical_boundary(img)
symmlev = symmetrical_boundary(lev_img)
img = convolutionFunction(symmimg, lowpass, mode='same')[h/2:-(h+1)/2,w/2:-(w+1)/2]
img += convolutionFunction(symmlev, highpass, mode='same')[h/2:-(h+1)/2,w/2:-(w+1)/2]
return img
@t-fukiage
Copy link

t-fukiage commented Feb 27, 2023

@evenlund
The following code is a modified version of rp_laplacian_like.py that I used.
Not sure if it still works as it was tested more than 3 years ago.
Hope this helps.

import numpy, scipy.signal

lowpass = numpy.asarray([
	[-0.0001,   -0.0007,  -0.0023,  -0.0046,  -0.0057,  -0.0046,  -0.0023,  -0.0007,  -0.0001],
	[-0.0007,   -0.0030,  -0.0047,  -0.0025,  -0.0003,  -0.0025,  -0.0047,  -0.0030,  -0.0007],
	[-0.0023,   -0.0047,   0.0054,   0.0272,   0.0387,   0.0272,   0.0054,  -0.0047,  -0.0023],
	[-0.0046,   -0.0025,   0.0272,   0.0706,   0.0910,   0.0706,   0.0272,  -0.0025,  -0.0046],
	[-0.0057,   -0.0003,   0.0387,   0.0910,   0.1138,   0.0910,   0.0387,  -0.0003,  -0.0057],
	[-0.0046,   -0.0025,   0.0272,   0.0706,   0.0910,   0.0706,   0.0272,  -0.0025,  -0.0046],
	[-0.0023,   -0.0047,   0.0054,   0.0272,   0.0387,   0.0272,   0.0054,  -0.0047,  -0.0023],
	[-0.0007,   -0.0030,  -0.0047,  -0.0025,  -0.0003,  -0.0025,  -0.0047,  -0.0030,  -0.0007],
	[-0.0001,   -0.0007,  -0.0023,  -0.0046,  -0.0057,  -0.0046,  -0.0023,  -0.0007,  -0.0001]
])

highpass = numpy.asarray([
	[0.0000,   0.0003,   0.0011,   0.0022,   0.0027,   0.0022,   0.0011,   0.0003,   0.0000],
	[0.0003,   0.0020,   0.0059,   0.0103,   0.0123,   0.0103,   0.0059,   0.0020,   0.0003],
	[0.0011,   0.0059,   0.0151,   0.0249,   0.0292,   0.0249,   0.0151,   0.0059,   0.0011],
	[0.0022,   0.0103,   0.0249,   0.0402,   0.0469,   0.0402,   0.0249,   0.0103,   0.0022],
	[0.0027,   0.0123,   0.0292,   0.0469,  -0.9455,   0.0469,   0.0292,   0.0123,   0.0027],
	[0.0022,   0.0103,   0.0249,   0.0402,   0.0469,   0.0402,   0.0249,   0.0103,   0.0022],
	[0.0011,   0.0059,   0.0151,   0.0249,   0.0292,   0.0249,   0.0151,   0.0059,   0.0011],
	[0.0003,   0.0020,   0.0059,   0.0103,   0.0123,   0.0103,   0.0059,   0.0020,   0.0003],
	[0.0000,   0.0003,   0.0011,   0.0022,   0.0027,   0.0022,   0.0011,   0.0003,   0.0000]
])



def build_laplacian(img, minsize=2, dtype=numpy.float64):
    img = dtype(img)
    levels = []
    while (min(img.shape) > minsize):
        convolutionFunction = scipy.signal.convolve2d

        hp_img = convolutionFunction(img, highpass, mode='same',boundary='fill')
        lp_img = convolutionFunction(img, lowpass, mode='same',boundary='fill')
        levels.append(hp_img)
        img = lp_img[0::2,0::2]

    levels.append(img)
    return levels


def collapse_laplacian(levels):
    img = levels[-1]
    for ii in range(len(levels)-2,-1,-1):
        lev_img = levels[ii]

        upimg = numpy.zeros((img.shape[0]*2,img.shape[1]*2))
        upimg[0::2,0::2]=img.copy()*4

        img = upimg[0:lev_img.shape[0],0:lev_img.shape[1]]

        convolutionFunction = scipy.signal.convolve2d

        img = convolutionFunction(img, lowpass, mode='same',boundary='fill')
        img += convolutionFunction(lev_img, highpass, mode='same',boundary='fill')
    return img

@evenlund
Copy link

@t-fukiage That was working really nice - Thank you!

I got some small deviations close to the edges, but not a whole lot. I have experimented a bit with the borders, but the 'fill' method appears to be best. I also included the scipy.signal.fftconvolve method to speed up the processing for larger images and that appears to have similar edge deviations.

@t-fukiage
Copy link

t-fukiage commented Mar 1, 2023

@evenlund
Good to hear that the code worked.

If you want to handle boundary with convolution, the following modification would do the trick:

def build_laplacian(img, minsize=2, dtype=numpy.float64):
    img = dtype(img)
    levels = []
    while (min(img.shape) > minsize):
        # convolutionFunction = scipy.signal.convolve2d
        # hp_img = convolutionFunction(img, highpass, mode='same',boundary='fill')
        # lp_img = convolutionFunction(img, lowpass, mode='same',boundary='fill')
        hp_img = scipy.signal.convolve2d(numpy.pad(img, (highpass.shape[0]-1)//2, mode='reflect'), highpass, mode='valid')
        lp_img = scipy.signal.convolve2d(numpy.pad(img, (lowpass.shape[0]-1)//2, mode='reflect'), lowpass, mode='valid')

        levels.append(hp_img)
        img = lp_img[0::2,0::2]

    levels.append(img)
    return levels


def collapse_laplacian(levels):
    img = levels[-1]
    for ii in range(len(levels)-2,-1,-1):
        lev_img = levels[ii]

        upimg = numpy.zeros((img.shape[0]*2,img.shape[1]*2))
        upimg[0::2,0::2]=img.copy()*4

        img = upimg[0:lev_img.shape[0],0:lev_img.shape[1]]

        # convolutionFunction = scipy.signal.convolve2d
        # img = convolutionFunction(img, lowpass, mode='same',boundary='fill')
        # img += convolutionFunction(lev_img, highpass, mode='same',boundary='fill')

        img = scipy.signal.convolve2d(numpy.pad(img, (lowpass.shape[0]-1)//2, mode='reflect'), lowpass, mode='valid')
        img += scipy.signal.convolve2d(numpy.pad(lev_img, (highpass.shape[0]-1)//2, mode='reflect'), highpass, mode='valid')
   
    return img

I used numpy.pad function to apply mirror (reflection) padding. The original code by @jackdoerner includes a function to apply symmetric padding, but the symmetric padding can cause another artifact in my modified code. (e.g., it amplifies energy at the top-left corner)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment