Last active
June 27, 2017 03:26
-
-
Save jackhftang/4306586227405b3a90289082236f53ae to your computer and use it in GitHub Desktop.
An demonstration of autograd. Guess the linear recursive relation of fibnonssi number. i.e. Given f(0) = a0, f(1) = a1, f(x) = w0*f(x-1) + w1*f(x-2), find a0,a1,w that best approximate fibonacci sequence fib(i) where i = 5..9
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch as th | |
from torch.autograd import Variable | |
## helpers | |
def var(t): | |
return Variable(t, requires_grad=True) | |
## training data | |
fibs = [1, 1] | |
for i in range(8): | |
fibs.append(fibs[i] + fibs[i - 1]) | |
## variables | |
a0 = var(th.randn(1)) # optimal = 1 | |
a1 = var(th.randn(1)) # optimal = 1 | |
w = var(th.randn(2)) # optimal = [1,1] | |
## model | |
def model(x): | |
if x == 0: return a0 | |
if x == 1: return a1 | |
a = model(x - 1) | |
b = model(x - 2) | |
return w[0] * a + w[1] * b | |
def report(name): | |
print(f'==== {name} ====') | |
print(f'a0={a0.data[0]}') | |
print(f'a1={a1.data[0]}') | |
print(f'w0={w.data[0]}') | |
print(f'w1={w.data[1]}') | |
loss = [(model(i) - fibs[i]).abs().data[0] for i in range(len(fibs))] | |
print(f'loss={loss}') | |
## training | |
report('initial') | |
rate = 0.001 | |
for i in range(10000): | |
print(f'running iteration {i}...', end='\r') | |
## approximate last 5 values | |
for j in range(len(fibs) - 5, len(fibs)): | |
## absolute diff. as loss | |
loss = (model(j) - fibs[j]).abs() | |
## calculate gradient | |
loss.backward() | |
## update variables | |
for v in [a0, a1, w]: | |
v.data -= rate * v.grad.data | |
v.grad.data.zero_() | |
report('final') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment