Created
January 1, 2022 14:03
-
-
Save jackyyeh5111/41843780b02f3d337afa8a27d311b19c to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
img_path = 'image/G2/6.jpg'# Detect and remove unrelevant regions (batch). | |
import cv2 | |
import numpy as np | |
import pandas as pd | |
# Parameters. | |
group_lst = ['G1', 'G2', 'G3', 'G4'] | |
group_dct = {'G1': 19, 'G2': 13, 'G3': 15, 'G4': 16} | |
kernel = np.ones((5,5), np.uint8) | |
img_path = 'image/G2/6.jpg' | |
img = cv2.imread(img_path) | |
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) | |
# Lower bound and upper bound for Green color. | |
for i in range(0, 255, 10): | |
lower_bound = np.array([36, i, 25]) | |
upper_bound = np.array([86, 255, 255]) | |
# Find the colors within the boundaries. | |
mask = cv2.inRange(hsv, lower_bound, upper_bound) | |
# # Remove unnecessary noise from mask | |
# mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel) | |
# mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel) | |
# # Segment only the detected region | |
segmented_img = cv2.bitwise_and(img, img, mask=mask) | |
# # Save the segmented image. | |
# img_path_to_store = 'image/p' + group + '/' + str(j) + '.jpg' | |
cv2.imwrite('hsv_{}.jpg'.format(str(i)), segmented_img) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment