Created
October 2, 2019 06:35
-
-
Save jackz314/09cf253d3451f169c2dbb6bbfed73782 to your computer and use it in GitHub Desktop.
Multi Prime RSA solver
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Solves multi prime rsa given n, e, and c. Need to factor n into primes first (recommend yafu) | |
# Reference https://crypto.stackexchange.com/questions/31109/rsa-enc-decryption-with-multiple-prime-modulus-using-crt | |
# From https://github.com/diogoaj/ctf-writeups/tree/master/2018/Timisoara/crypto/NotYourAverageRSA | |
# Params | |
e = 65537 | |
c = 48761539940486768790697951968441053167086423529120379009399989923982917278530780108524481919294548305561552133247376067350664771674488982501980538923179804440135482761541868213581098181220801732284669971107195377327445661261746882474615837238429855596647745621191046720648860759474615170945636435027382702345930153884587334870109990234396501579 | |
n = 81736943705459767985288486167314099164146317197040392194768161097750074479540025761100109449092862009195976097250151609584294118669228141027624354052423638509988705830737675936098155468596924772948252465412194715615408850250410310761063399013426728554729053139453019049285162533445627620506060381552244023004446417793032764776342793336374803699 | |
# primes are factored from n | |
primes = [13791271931, 14045354431, 9135653437, 13351818269, 12139150253, 16755272693, 12624207653, 17085139931, 10173449261, 14433479449, 9864787187, 16512953389, 11924202263, 15640499503, 11824459483, 16610374789, 10802213987, 14984854631, 13227411217, 16593548737, 13898961539, 8883963797, 16733116537, 12405130123, 13370635781, 10965930293, 11279137189, 9312576787, 15410839123, 14616587107, 15424024453, 9190503997, 15975600409, 12580269851] | |
def egcd(a, b): | |
if a == 0: | |
return (b, 0, 1) | |
else: | |
g, y, x = egcd(b % a, a) | |
return (g, x - (b // a) * y, y) | |
def modinv(a, m): | |
g, x, y = egcd(a, m) | |
if g != 1: | |
raise Exception('modular inverse does not exist') | |
else: | |
return x % m | |
ts = [] | |
xs = [] | |
ds = [] | |
for i in range(len(primes)): | |
ds.append(modinv(e, primes[i]-1)) | |
m = primes[0] | |
for i in range(1, len(primes)): | |
ts.append(modinv(m, primes[i])) | |
m = m * primes[i] | |
for i in range(len(primes)): | |
xs.append(pow((c%primes[i]), ds[i], primes[i])) | |
x = xs[0] | |
m = primes[0] | |
for i in range(1, len(primes)): | |
x = x + m * ((xs[i] - x % primes[i]) * (ts[i-1] % primes[i])) | |
m = m * primes[i] | |
print hex(x%n)[2:-1].decode("hex") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
FYI-- as of Python 3.8, modular-inverse is in stdlib: