Created
August 7, 2014 12:08
-
-
Save jaeandersson/4b165c941603824b5afb to your computer and use it in GitHub Desktop.
Direct multiple shooting with CasADi
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from casadi import * | |
from numpy import * | |
import matplotlib.pyplot as plt | |
N = 20 # Control discretization | |
T = 10.0 # End time | |
# Declare variables (use scalar graph) | |
u = SX.sym("u") # control | |
x = SX.sym("x",2) # states | |
# System dynamics | |
xdot = vertcat( [(1 - x[1]**2)*x[0] - x[1] + u, x[0]] ) | |
qdot = x[0]**2 + x[1]**2 + u**2 | |
f = SXFunction([x,u],[xdot,qdot]) | |
f.init() | |
# RK4 with M steps | |
U = MX.sym("U") | |
X = MX.sym("X",2) | |
M = 10; DT = T/(N*M) | |
XF = X | |
QF = 0 | |
for j in range(M): | |
[k1, k1_q] = f([XF, U]) | |
[k2, k2_q] = f([XF + DT/2 * k1, U]) | |
[k3, k3_q] = f([XF + DT/2 * k2, U]) | |
[k4, k4_q] = f([XF + DT * k3, U]) | |
XF += DT/6*(k1 + 2*k2 + 2*k3 + k4) | |
QF += DT/6*(k1_q + 2*k2_q + 2*k3_q + k4_q) | |
F = MXFunction([X,U],[XF,QF]) | |
F.init() | |
# Formulate NLP (use matrix graph) | |
nv = 1*N + 2*(N+1) | |
v = MX.sym("v", nv) | |
# Get the state for each shooting interval | |
xk = [v[3*k : 3*k + 2] for k in range(N+1)] | |
# Get the control for each shooting interval | |
uk = [v[3*k + 2] for k in range(N)] | |
# Variable bounds and initial guess | |
vmin = -inf*ones(nv) | |
vmax = inf*ones(nv) | |
v0 = zeros(nv) | |
# Control bounds | |
vmin[2::3] = -1.0 | |
vmax[2::3] = 1.0 | |
# Initial condition | |
vmin[0] = vmax[0] = v0[0] = 0 | |
vmin[1] = vmax[1] = v0[1] = 1 | |
# Terminal constraint | |
vmin[-2] = vmax[-2] = v0[-2] = 0 | |
vmin[-1] = vmax[-1] = v0[-1] = 0 | |
# Initial solution guess | |
v0 = zeros(nv) | |
# Constraint function with bounds | |
g = []; gmin = []; gmax = [] | |
# Objective function | |
J=0 | |
# Build up a graph of integrator calls | |
for k in range(N): | |
# Call the integrator | |
[xf, qf] = F([xk[k],uk[k]]) | |
# Add contribution to objective | |
J += qf | |
# Append continuity constraints | |
g.append(xf - xk[k+1]) | |
gmin.append(zeros(2)) | |
gmax.append(zeros(2)) | |
# Concatenate constraints | |
g = vertcat(g) | |
gmin = concatenate(gmin) | |
gmax = concatenate(gmax) | |
# Create NLP solver instance | |
nlp = MXFunction(nlpIn(x=v),nlpOut(f=J,g=g)) | |
solver = NlpSolver("ipopt", nlp) | |
solver.init() | |
# Set bounds and initial guess | |
solver.setInput(v0, "x0") | |
solver.setInput(vmin, "lbx") | |
solver.setInput(vmax, "ubx") | |
solver.setInput(gmin, "lbg") | |
solver.setInput(gmax, "ubg") | |
# Solve the problem | |
solver.evaluate() | |
# Retrieve the solution | |
v_opt = solver.getOutput("x") | |
x0_opt = v_opt[0::3] | |
x1_opt = v_opt[1::3] | |
u_opt = v_opt[2::3] | |
# Plot the results | |
plt.figure(1) | |
plt.clf() | |
plt.plot(linspace(0,T,N+1),x0_opt,'--') | |
plt.plot(linspace(0,T,N+1),x1_opt,'-') | |
plt.step(linspace(0,T,N),u_opt,'-.') | |
plt.title("Van der Pol optimization - multiple shooting") | |
plt.xlabel('time') | |
plt.legend(['x0 trajectory','x1 trajectory','u trajectory']) | |
plt.grid() | |
plt.show() | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment