Skip to content

Instantly share code, notes, and snippets.

@jaeandersson
Created June 16, 2016 13:37
Show Gist options
  • Save jaeandersson/8f3644488c69b9642c8b1a851830b846 to your computer and use it in GitHub Desktop.
Save jaeandersson/8f3644488c69b9642c8b1a851830b846 to your computer and use it in GitHub Desktop.
Autogenerated MATLAB code for "casadi::Function"
classdef Function < casadi.SharedObject
%General function.
%
%A general function $f$ in casadi can be multi-input, multi-output. Number of
%inputs: nin n_in() Number of outputs: nout n_out() We can view this
%function as a being composed of a ( nin, nout) grid of single-input, single-
%output primitive functions. Each such primitive function $f_ {i, j}
%\\forall i \\in [0, nin-1], j \\in [0, nout-1]$ can map as $\\mathbf
%{R}^{n, m}\\to\\mathbf{R}^{p, q}$, in which n, m, p, q can take
%different values for every (i, j) pair. When passing input, you specify
%which partition $i$ is active. You pass the numbers vectorized, as a vector
%of size $(n*m)$. When requesting output, you specify which partition $j$ is
%active. You get the numbers vectorized, as a vector of size $(p*q)$. To
%calculate Jacobians, you need to have $(m=1, q=1)$.
%
%Write the Jacobian as $J_ {i, j} = \\nabla f_{i, j} = \\frac
%{\\partial f_{i, j}(\\vec{x})}{\\partial \\vec{x}}$.
%
%We have the following relationships for function mapping from a row vector
%to a row vector:
%
%$ \\vec {s}_f = \\nabla f_{i, j} . \\vec{v}$ $ \\vec {s}_a =
%(\\nabla f_{i, j})^T . \\vec{w}$
%
%Some quantities in these formulas must be transposed: input col: transpose $
%\\vec {v} $ and $\\vec{s}_a$ output col: transpose $ \\vec {w} $ and
%$\\vec{s}_f$ NOTE: Functions are allowed to modify their input arguments
%when evaluating: implicitFunction, IDAS solver Further releases may disallow
%this.
%
%Joel Andersson
%
%C++ includes: function.hpp
%Usage: Function ()
%
methods
function delete(self)
if self.swigPtr
casadiMEX(746, self);
self.swigPtr=[];
end
end
function varargout = expand(self,varargin)
%Expand a function to SX.
%
%
%Usage: retval = expand (name, opts = casadi::Dict())
%
%name is of type std::string const &. opts is of type casadi::Dict const &. name is of type std::string const &. opts is of type casadi::Dict const &. retval is of type Function.
[varargout{1:nargout}] = casadiMEX(747, self, varargin{:});
end
function varargout = n_in(self,varargin)
%Get the number of function inputs.
%
%
%Usage: retval = n_in ()
%
%retval is of type int.
[varargout{1:nargout}] = casadiMEX(748, self, varargin{:});
end
function varargout = n_out(self,varargin)
%Get the number of function outputs.
%
%
%Usage: retval = n_out ()
%
%retval is of type int.
[varargout{1:nargout}] = casadiMEX(749, self, varargin{:});
end
function varargout = size1_in(self,varargin)
%Get input dimension.
%
%
%Usage: retval = size1_in (iname)
%
%iname is of type std::string const &. iname is of type std::string const &. retval is of type int.
[varargout{1:nargout}] = casadiMEX(750, self, varargin{:});
end
function varargout = size2_in(self,varargin)
%Get input dimension.
%
%
%Usage: retval = size2_in (iname)
%
%iname is of type std::string const &. iname is of type std::string const &. retval is of type int.
[varargout{1:nargout}] = casadiMEX(751, self, varargin{:});
end
function varargout = size_in(self,varargin)
%Get input dimension.
%
%
%Usage: retval = size_in (iname)
%
%iname is of type std::string const &. iname is of type std::string const &. retval is of type std::pair< int,int >.
[varargout{1:nargout}] = casadiMEX(752, self, varargin{:});
end
function varargout = size1_out(self,varargin)
%Get output dimension.
%
%
%Usage: retval = size1_out (oname)
%
%oname is of type std::string const &. oname is of type std::string const &. retval is of type int.
[varargout{1:nargout}] = casadiMEX(753, self, varargin{:});
end
function varargout = size2_out(self,varargin)
%Get output dimension.
%
%
%Usage: retval = size2_out (oname)
%
%oname is of type std::string const &. oname is of type std::string const &. retval is of type int.
[varargout{1:nargout}] = casadiMEX(754, self, varargin{:});
end
function varargout = size_out(self,varargin)
%Get output dimension.
%
%
%Usage: retval = size_out (oname)
%
%oname is of type std::string const &. oname is of type std::string const &. retval is of type std::pair< int,int >.
[varargout{1:nargout}] = casadiMEX(755, self, varargin{:});
end
function varargout = nnz_in(self,varargin)
%Get of number of input nonzeros For a particular input or for all for all of
%the inputs.
%
%
%Usage: retval = nnz_in (iname)
%
%iname is of type std::string const &. iname is of type std::string const &. retval is of type int.
[varargout{1:nargout}] = casadiMEX(756, self, varargin{:});
end
function varargout = nnz_out(self,varargin)
%Get of number of output nonzeros For a particular output or for all for all
%of the outputs.
%
%
%Usage: retval = nnz_out (oname)
%
%oname is of type std::string const &. oname is of type std::string const &. retval is of type int.
[varargout{1:nargout}] = casadiMEX(757, self, varargin{:});
end
function varargout = numel_in(self,varargin)
%Get of number of input elements For a particular input or for all for all of
%the inputs.
%
%
%Usage: retval = numel_in (iname)
%
%iname is of type std::string const &. iname is of type std::string const &. retval is of type int.
[varargout{1:nargout}] = casadiMEX(758, self, varargin{:});
end
function varargout = numel_out(self,varargin)
%Get of number of output elements For a particular output or for all for all
%of the outputs.
%
%
%Usage: retval = numel_out (oname)
%
%oname is of type std::string const &. oname is of type std::string const &. retval is of type int.
[varargout{1:nargout}] = casadiMEX(759, self, varargin{:});
end
function varargout = name_in(self,varargin)
%> [str] Function.name_in() const
%------------------------------------------------------------------------
%
%Get input scheme.
%
%> str Function.name_in(int ind) const
%------------------------------------------------------------------------
%
%Get input scheme name by index.
%
%
%Usage: retval = name_in (ind)
%
%ind is of type int. ind is of type int. retval is of type std::string.
[varargout{1:nargout}] = casadiMEX(760, self, varargin{:});
end
function varargout = name_out(self,varargin)
%> [str] Function.name_out() const
%------------------------------------------------------------------------
%
%Get output scheme.
%
%> str Function.name_out(int ind) const
%------------------------------------------------------------------------
%
%Get output scheme name by index.
%
%
%Usage: retval = name_out (ind)
%
%ind is of type int. ind is of type int. retval is of type std::string.
[varargout{1:nargout}] = casadiMEX(761, self, varargin{:});
end
function varargout = index_in(self,varargin)
%Find the index for a string describing a particular entry of an input
%scheme.
%
%example: schemeEntry("x_opt") -> returns NLPSOL_X if FunctionInternal
%adheres to SCHEME_NLPINput
%
%
%Usage: retval = index_in (name)
%
%name is of type std::string const &. name is of type std::string const &. retval is of type int.
[varargout{1:nargout}] = casadiMEX(762, self, varargin{:});
end
function varargout = index_out(self,varargin)
%Find the index for a string describing a particular entry of an output
%scheme.
%
%example: schemeEntry("x_opt") -> returns NLPSOL_X if FunctionInternal
%adheres to SCHEME_NLPINput
%
%
%Usage: retval = index_out (name)
%
%name is of type std::string const &. name is of type std::string const &. retval is of type int.
[varargout{1:nargout}] = casadiMEX(763, self, varargin{:});
end
function varargout = default_in(self,varargin)
%Get default input value (NOTE: constant reference)
%
%
%Usage: retval = default_in (ind)
%
%ind is of type int. ind is of type int. retval is of type double.
[varargout{1:nargout}] = casadiMEX(764, self, varargin{:});
end
function varargout = sparsity_in(self,varargin)
%Get sparsity of a given input.
%
%
%Usage: retval = sparsity_in (iname)
%
%iname is of type std::string const &. iname is of type std::string const &. retval is of type Sparsity.
[varargout{1:nargout}] = casadiMEX(765, self, varargin{:});
end
function varargout = sparsity_out(self,varargin)
%Get sparsity of a given output.
%
%
%Usage: retval = sparsity_out (iname)
%
%iname is of type std::string const &. iname is of type std::string const &. retval is of type Sparsity.
[varargout{1:nargout}] = casadiMEX(766, self, varargin{:});
end
function varargout = printDimensions(self,varargin)
%Print dimensions of inputs and outputs.
%
%
%Usage: printDimensions ()
%
[varargout{1:nargout}] = casadiMEX(767, self, varargin{:});
end
function varargout = printOptions(self,varargin)
%Print options to a stream.
%
%
%Usage: printOptions ()
%
[varargout{1:nargout}] = casadiMEX(768, self, varargin{:});
end
function varargout = printOption(self,varargin)
%Print all information there is to know about a certain option.
%
%
%Usage: printOption (name)
%
%name is of type std::string const &.
[varargout{1:nargout}] = casadiMEX(769, self, varargin{:});
end
function varargout = jacobian(self,varargin)
%Generate a Jacobian function of output oind with respect to input iind.
%
%Parameters:
%-----------
%
%iind: The index of the input
%
%oind: The index of the output
%
%The default behavior of this class is defined by the derived class. If
%compact is set to true, only the nonzeros of the input and output
%expressions are considered. If symmetric is set to true, the Jacobian being
%calculated is known to be symmetric (usually a Hessian), which can be
%exploited by the algorithm.
%
%The generated Jacobian has one more output than the calling function
%corresponding to the Jacobian and the same number of inputs.
%
%
%Usage: retval = jacobian (iind, oind, compact = false, symmetric = false)
%
%iind is of type std::string const &. oind is of type std::string const &. compact is of type bool. symmetric is of type bool. iind is of type std::string const &. oind is of type std::string const &. compact is of type bool. symmetric is of type bool. retval is of type Function.
[varargout{1:nargout}] = casadiMEX(770, self, varargin{:});
end
function varargout = setJacobian(self,varargin)
%Set the Jacobian function of output oind with respect to input iind NOTE:
%Does not take ownership, only weak references to the Jacobians are kept
%internally
%
%
%Usage: setJacobian (jac, iind = 0, oind = 0, compact = false)
%
%jac is of type Function. iind is of type int. oind is of type int. compact is of type bool.
[varargout{1:nargout}] = casadiMEX(771, self, varargin{:});
end
function varargout = gradient(self,varargin)
%Generate a gradient function of output oind with respect to input iind.
%
%Parameters:
%-----------
%
%iind: The index of the input
%
%oind: The index of the output
%
%The default behavior of this class is defined by the derived class. Note
%that the output must be scalar. In other cases, use the Jacobian instead.
%
%
%Usage: retval = gradient (iind, oind)
%
%iind is of type std::string const &. oind is of type std::string const &. iind is of type std::string const &. oind is of type std::string const &. retval is of type Function.
[varargout{1:nargout}] = casadiMEX(772, self, varargin{:});
end
function varargout = tangent(self,varargin)
%Generate a tangent function of output oind with respect to input iind.
%
%Parameters:
%-----------
%
%iind: The index of the input
%
%oind: The index of the output
%
%The default behavior of this class is defined by the derived class. Note
%that the input must be scalar. In other cases, use the Jacobian instead.
%
%
%Usage: retval = tangent (iind, oind)
%
%iind is of type std::string const &. oind is of type std::string const &. iind is of type std::string const &. oind is of type std::string const &. retval is of type Function.
[varargout{1:nargout}] = casadiMEX(773, self, varargin{:});
end
function varargout = hessian(self,varargin)
%Generate a Hessian function of output oind with respect to input iind.
%
%Parameters:
%-----------
%
%iind: The index of the input
%
%oind: The index of the output
%
%The generated Hessian has two more outputs than the calling function
%corresponding to the Hessian and the gradients.
%
%
%Usage: retval = hessian (iind, oind)
%
%iind is of type std::string const &. oind is of type std::string const &. iind is of type std::string const &. oind is of type std::string const &. retval is of type Function.
[varargout{1:nargout}] = casadiMEX(774, self, varargin{:});
end
function varargout = fullJacobian(self,varargin)
%Generate a Jacobian function of all the inputs elements with respect to all
%the output elements).
%
%
%Usage: retval = fullJacobian ()
%
%retval is of type Function.
[varargout{1:nargout}] = casadiMEX(775, self, varargin{:});
end
function varargout = setFullJacobian(self,varargin)
%Set the Jacobian of all the input nonzeros with respect to all output
%nonzeros NOTE: Does not take ownership, only weak references to the Jacobian
%are kept internally
%
%
%Usage: setFullJacobian (jac)
%
%jac is of type Function.
[varargout{1:nargout}] = casadiMEX(776, self, varargin{:});
end
function varargout = call(self,varargin)
%Evaluate the function symbolically or numerically.
%
%
%Usage: call (arg, always_inline = false, never_inline = false)
%
%arg is of type casadi::MXDict const &. always_inline is of type bool. never_inline is of type bool.
[varargout{1:nargout}] = casadiMEX(777, self, varargin{:});
end
function varargout = mapsum(self,varargin)
%Evaluate symbolically in parallel and sum (matrix graph)
%
%Parameters:
%-----------
%
%parallelization: Type of parallelization used: unroll|serial|openmp
%
%
%Usage: retval = mapsum (arg, parallelization = "serial")
%
%arg is of type std::vector< casadi::MX,std::allocator< casadi::MX > > const &. parallelization is of type std::string const &. arg is of type std::vector< casadi::MX,std::allocator< casadi::MX > > const &. parallelization is of type std::string const &. retval is of type std::vector< casadi::MX,std::allocator< casadi::MX > >.
[varargout{1:nargout}] = casadiMEX(778, self, varargin{:});
end
function varargout = mapaccum(self,varargin)
%Create a mapaccumulated version of this function.
%
%Suppose the function has a signature of:
%
%::
%
% f: (x, u) -> (x_next , y )
%
%
%
%
%The the mapaccumulated version has the signature:
%
%::
%
% F: (x0, U) -> (X , Y )
%
% with
% U: horzcat([u0, u1, ..., u_(N-1)])
% X: horzcat([x1, x2, ..., x_N])
% Y: horzcat([y0, y1, ..., y_(N-1)])
%
% and
% x1, y0 <- f(x0, u0)
% x2, y1 <- f(x1, u1)
% ...
% x_N, y_(N-1) <- f(x_(N-1), u_(N-1))
%
%
%
%
%
%Usage: retval = mapaccum (name, n, accum_in, accum_out, opts = casadi::Dict())
%
%name is of type std::string const &. n is of type int. accum_in is of type std::vector< int,std::allocator< int > > const &. accum_out is of type std::vector< int,std::allocator< int > > const &. opts is of type casadi::Dict const &. name is of type std::string const &. n is of type int. accum_in is of type std::vector< int,std::allocator< int > > const &. accum_out is of type std::vector< int,std::allocator< int > > const &. opts is of type casadi::Dict const &. retval is of type Function.
[varargout{1:nargout}] = casadiMEX(779, self, varargin{:});
end
function varargout = map(self,varargin)
%> Function Function.map(str name, str parallelization, int n, [int ] reduce_in, [int ] reduce_out, Dict opts=Dict())
%
%> Function Function.map(str name, str parallelization, int n, Dict opts=Dict())
%------------------------------------------------------------------------
%
%Create a mapped version of this function.
%
%Suppose the function has a signature of:
%
%::
%
% f: (a, p) -> ( s )
%
%
%
%
%The the mapaccumulated version has the signature:
%
%::
%
% F: (A, P) -> (S )
%
% with
% A: horzcat([a0, a1, ..., a_(N-1)])
% P: horzcat([p0, p1, ..., p_(N-1)])
% S: horzcat([s0, s1, ..., s_(N-1)])
% and
% s0 <- f(a0, p0)
% s1 <- f(a1, p1)
% ...
% s_(N-1) <- f(a_(N-1), p_(N-1))
%
%
%
%
%Parameters:
%-----------
%
%parallelization: Type of parallelization used: unroll|serial|openmp
%
%> [MX] Function.map([MX ] arg, str parallelization="serial")
%
%> std.map<str, MX> Function.map(const std.map< str, MX > &arg, str parallelization="serial")
%------------------------------------------------------------------------
%
%Evaluate symbolically in parallel (matrix graph)
%
%Parameters:
%-----------
%
%parallelization: Type of parallelization used: unroll|serial|openmp
%
%
%Usage: retval = map (name, parallelization, n, opts = casadi::Dict())
%
%name is of type std::string const &. parallelization is of type std::string const &. n is of type int. opts is of type casadi::Dict const &. name is of type std::string const &. parallelization is of type std::string const &. n is of type int. opts is of type casadi::Dict const &. retval is of type Function.
[varargout{1:nargout}] = casadiMEX(780, self, varargin{:});
end
function varargout = slice(self,varargin)
%returns a new function with a selection of inputs/outputs of the original
%
%
%Usage: retval = slice (order_in, order_out, opts = casadi::Dict())
%
%order_in is of type std::vector< int,std::allocator< int > > const &. order_out is of type std::vector< int,std::allocator< int > > const &. opts is of type casadi::Dict const &. order_in is of type std::vector< int,std::allocator< int > > const &. order_out is of type std::vector< int,std::allocator< int > > const &. opts is of type casadi::Dict const &. retval is of type Function.
[varargout{1:nargout}] = casadiMEX(781, self, varargin{:});
end
function varargout = kernel_sum(self,varargin)
%kernel_sum Consider a dense matrix V.
%
%KernelSum computes
%
%F(V,X) = sum_i sum_j f ( [i;j], V(i,j), X)
%
%with X: [x;y]
%
%where the summation is taken for all entries (i,j) that are a distance r
%away from X.
%
%This function assumes that V is fixed: sensitivities with respect to it are
%not computed.
%
%This allows for improved speed of evaluation.
%
%Having V fixed is a common use case: V may be a large bitmap (observation),
%onto which a kernel is fitted.
%
%Joris Gillis
%
%
%Usage: retval = kernel_sum (name, size, r, n, opts = casadi::Dict())
%
%name is of type std::string const &. size is of type std::pair< int,int > const &. r is of type double. n is of type int. opts is of type casadi::Dict const &. name is of type std::string const &. size is of type std::pair< int,int > const &. r is of type double. n is of type int. opts is of type casadi::Dict const &. retval is of type Function.
[varargout{1:nargout}] = casadiMEX(784, self, varargin{:});
end
function varargout = derivative(self,varargin)
%> void Function.derivative([DM] arg, [DM] &output_res, [DMVector] fseed, [DMVector] &output_fsens, [DMVector] aseed, [DMVector] &output_asens, bool always_inline=false, bool never_inline=false)
%
%> void Function.derivative([SX] arg, [SX] &output_res, [SXVector] fseed, [SXVector] &output_fsens, [SXVector] aseed, [SXVector] &output_asens, bool always_inline=false, bool never_inline=false)
%
%> void Function.derivative([MX] arg, [MX] &output_res, [MXVector] fseed, [MXVector] &output_fsens, [MXVector] aseed, [MXVector] &output_asens, bool always_inline=false, bool never_inline=false)
%------------------------------------------------------------------------
%[INTERNAL]
%Evaluate the function symbolically or numerically with directional
%derivatives The first two arguments are the nondifferentiated inputs
%and results of the evaluation, the next two arguments are a set of
%forward directional seeds and the resulting forward directional
%derivatives, the length of the vector being the number of forward
%directions. The next two arguments are a set of adjoint directional
%seeds and the resulting adjoint directional derivatives, the length of
%the vector being the number of adjoint directions.
%
%> Function Function.derivative(int nfwd, int nadj)
%------------------------------------------------------------------------
%
%Get a function that calculates nfwd forward derivatives and nadj adjoint
%derivatives Legacy function: Use forward and reverse instead.
%
%Returns a function with (1+nfwd)*n_in+nadj*n_out inputs and (1+nfwd)*n_out +
%nadj*n_in outputs. The first n_in inputs correspond to nondifferentiated
%inputs. The next nfwd*n_in inputs correspond to forward seeds, one direction
%at a time and the last nadj*n_out inputs correspond to adjoint seeds, one
%direction at a time. The first n_out outputs correspond to nondifferentiated
%outputs. The next nfwd*n_out outputs correspond to forward sensitivities,
%one direction at a time and the last nadj*n_in outputs corresponds to
%adjoint sensitivities, one direction at a time.
%
%(n_in = n_in(), n_out = n_out())
%
%
%Usage: retval = derivative (nfwd, nadj)
%
%nfwd is of type int. nadj is of type int. nfwd is of type int. nadj is of type int. retval is of type Function.
[varargout{1:nargout}] = casadiMEX(785, self, varargin{:});
end
function varargout = forward(self,varargin)
%> void Function.forward([MX ] arg, [MX ] res, [[MX ] ] fseed,[[MX ] ] output_fsens, bool always_inline=false, bool never_inline=false)
%
%> void Function.forward([SX ] arg, [SX ] res, [[SX ] ] fseed,[[SX ] ] output_fsens, bool always_inline=false, bool never_inline=false)
%
%> void Function.forward([DM ] arg, [DM ] res, [[DM ] ] fseed,[[DM ] ] output_fsens, bool always_inline=false, bool never_inline=false)
%------------------------------------------------------------------------
%
%Create call to (cached) derivative function, forward mode.
%
%> Function Function.forward(int nfwd)
%------------------------------------------------------------------------
%
%Get a function that calculates nfwd forward derivatives.
%
%Returns a function with n_in + n_out +nfwd*n_in inputs and nfwd*n_out
%outputs. The first n_in inputs correspond to nondifferentiated inputs. The
%next n_out inputs correspond to nondifferentiated outputs. and the last
%nfwd*n_in inputs correspond to forward seeds, one direction at a time The
%nfwd*n_out outputs correspond to forward sensitivities, one direction at a
%time. * (n_in = n_in(), n_out = n_out())
%
%The functions returned are cached, meaning that if called multiple timed
%with the same value, then multiple references to the same function will be
%returned.
%
%
%Usage: retval = forward (nfwd)
%
%nfwd is of type int. nfwd is of type int. retval is of type Function.
[varargout{1:nargout}] = casadiMEX(786, self, varargin{:});
end
function varargout = reverse(self,varargin)
%> void Function.reverse([MX ] arg, [MX ] res, [[MX ] ] aseed,[[MX ] ] output_asens, bool always_inline=false, bool never_inline=false)
%
%> void Function.reverse([SX ] arg, [SX ] res, [[SX ] ] aseed,[[SX ] ] output_asens, bool always_inline=false, bool never_inline=false)
%
%> void Function.reverse([DM ] arg, [DM ] res, [[DM ] ] aseed,[[DM ] ] output_asens, bool always_inline=false, bool never_inline=false)
%------------------------------------------------------------------------
%
%Create call to (cached) derivative function, reverse mode.
%
%> Function Function.reverse(int nadj)
%------------------------------------------------------------------------
%
%Get a function that calculates nadj adjoint derivatives.
%
%Returns a function with n_in + n_out +nadj*n_out inputs and nadj*n_in
%outputs. The first n_in inputs correspond to nondifferentiated inputs. The
%next n_out inputs correspond to nondifferentiated outputs. and the last
%nadj*n_out inputs correspond to adjoint seeds, one direction at a time The
%nadj*n_in outputs correspond to adjoint sensitivities, one direction at a
%time. * (n_in = n_in(), n_out = n_out())
%
%(n_in = n_in(), n_out = n_out())
%
%The functions returned are cached, meaning that if called multiple timed
%with the same value, then multiple references to the same function will be
%returned.
%
%
%Usage: retval = reverse (nadj)
%
%nadj is of type int. nadj is of type int. retval is of type Function.
[varargout{1:nargout}] = casadiMEX(787, self, varargin{:});
end
function varargout = set_forward(self,varargin)
%Set a function that calculates nfwd forward derivatives NOTE: Does not take
%ownership, only weak references to the derivatives are kept internally.
%
%
%Usage: set_forward (fcn, nfwd)
%
%fcn is of type Function. nfwd is of type int.
[varargout{1:nargout}] = casadiMEX(788, self, varargin{:});
end
function varargout = set_reverse(self,varargin)
%Set a function that calculates nadj adjoint derivatives NOTE: Does not take
%ownership, only weak references to the derivatives are kept internally.
%
%
%Usage: set_reverse (fcn, nadj)
%
%fcn is of type Function. nadj is of type int.
[varargout{1:nargout}] = casadiMEX(789, self, varargin{:});
end
function varargout = sparsity_jac(self,varargin)
%Get, if necessary generate, the sparsity of a Jacobian block
%
%
%Usage: retval = sparsity_jac (iind, oind, compact = false, symmetric = false)
%
%iind is of type std::string const &. oind is of type std::string const &. compact is of type bool. symmetric is of type bool. iind is of type std::string const &. oind is of type std::string const &. compact is of type bool. symmetric is of type bool. retval is of type Sparsity.
[varargout{1:nargout}] = casadiMEX(790, self, varargin{:});
end
function varargout = set_jac_sparsity(self,varargin)
%Generate the sparsity of a Jacobian block
%
%
%Usage: set_jac_sparsity (sp, iind, oind, compact = false)
%
%sp is of type Sparsity. iind is of type std::string const &. oind is of type std::string const &. compact is of type bool.
[varargout{1:nargout}] = casadiMEX(791, self, varargin{:});
end
function varargout = generate(self,varargin)
%Export / Generate C code for the function.
%
%
%Usage: generate (opts = casadi::Dict())
%
%opts is of type casadi::Dict const &.
[varargout{1:nargout}] = casadiMEX(792, self, varargin{:});
end
function varargout = generate_dependencies(self,varargin)
%Export / Generate C code for the dependency function.
%
%
%Usage: generate_dependencies (fname, opts = casadi::Dict())
%
%fname is of type std::string const &. opts is of type casadi::Dict const &.
[varargout{1:nargout}] = casadiMEX(793, self, varargin{:});
end
function varargout = stats(self,varargin)
%Get all statistics obtained at the end of the last evaluate call.
%
%
%Usage: retval = stats (mem = 0)
%
%mem is of type int. mem is of type int. retval is of type casadi::Dict.
[varargout{1:nargout}] = casadiMEX(794, self, varargin{:});
end
function varargout = sx_in(self,varargin)
%Get symbolic primitives equivalent to the input expressions There is no
%guarantee that subsequent calls return unique answers.
%
%
%Usage: retval = sx_in ()
%
%retval is of type std::vector< casadi::SX,std::allocator< casadi::SX > > const.
[varargout{1:nargout}] = casadiMEX(795, self, varargin{:});
end
function varargout = mx_in(self,varargin)
%Get symbolic primitives equivalent to the input expressions There is no
%guarantee that subsequent calls return unique answers.
%
%
%Usage: retval = mx_in ()
%
%retval is of type std::vector< casadi::MX,std::allocator< casadi::MX > > const.
[varargout{1:nargout}] = casadiMEX(796, self, varargin{:});
end
function varargout = sx_out(self,varargin)
%Get symbolic primitives equivalent to the output expressions There is no
%guarantee that subsequent calls return unique answers.
%
%
%Usage: retval = sx_out ()
%
%retval is of type std::vector< casadi::SX,std::allocator< casadi::SX > > const.
[varargout{1:nargout}] = casadiMEX(797, self, varargin{:});
end
function varargout = mx_out(self,varargin)
%Get symbolic primitives equivalent to the output expressions There is no
%guarantee that subsequent calls return unique answers.
%
%
%Usage: retval = mx_out ()
%
%retval is of type std::vector< casadi::MX,std::allocator< casadi::MX > > const.
[varargout{1:nargout}] = casadiMEX(798, self, varargin{:});
end
function varargout = free_sx(self,varargin)
%Get all the free variables of the function.
%
%
%Usage: retval = free_sx ()
%
%retval is of type SX.
[varargout{1:nargout}] = casadiMEX(799, self, varargin{:});
end
function varargout = free_mx(self,varargin)
%Get all the free variables of the function.
%
%
%Usage: retval = free_mx ()
%
%retval is of type std::vector< casadi::MX,std::allocator< casadi::MX > >.
[varargout{1:nargout}] = casadiMEX(800, self, varargin{:});
end
function varargout = has_free(self,varargin)
%Does the function have free variables.
%
%
%Usage: retval = has_free ()
%
%retval is of type bool.
[varargout{1:nargout}] = casadiMEX(801, self, varargin{:});
end
function varargout = generate_lifted(self,varargin)
%Extract the functions needed for the Lifted Newton method.
%
%
%Usage: generate_lifted ()
%
[varargout{1:nargout}] = casadiMEX(802, self, varargin{:});
end
function varargout = getAlgorithmSize(self,varargin)
%Get the number of atomic operations.
%
%
%Usage: retval = getAlgorithmSize ()
%
%retval is of type int.
[varargout{1:nargout}] = casadiMEX(803, self, varargin{:});
end
function varargout = getWorkSize(self,varargin)
%Get the length of the work vector.
%
%
%Usage: retval = getWorkSize ()
%
%retval is of type int.
[varargout{1:nargout}] = casadiMEX(804, self, varargin{:});
end
function varargout = getAtomicOperation(self,varargin)
%Get an atomic operation operator index.
%
%
%Usage: retval = getAtomicOperation (k)
%
%k is of type int. k is of type int. retval is of type int.
[varargout{1:nargout}] = casadiMEX(805, self, varargin{:});
end
function varargout = getAtomicInput(self,varargin)
%Get the (integer) input arguments of an atomic operation.
%
%
%Usage: retval = getAtomicInput (k)
%
%k is of type int. k is of type int. retval is of type std::pair< int,int >.
[varargout{1:nargout}] = casadiMEX(806, self, varargin{:});
end
function varargout = getAtomicInputReal(self,varargin)
%Get the floating point output argument of an atomic operation.
%
%
%Usage: retval = getAtomicInputReal (k)
%
%k is of type int. k is of type int. retval is of type double.
[varargout{1:nargout}] = casadiMEX(807, self, varargin{:});
end
function varargout = getAtomicOutput(self,varargin)
%Get the (integer) output argument of an atomic operation.
%
%
%Usage: retval = getAtomicOutput (k)
%
%k is of type int. k is of type int. retval is of type int.
[varargout{1:nargout}] = casadiMEX(808, self, varargin{:});
end
function varargout = n_nodes(self,varargin)
%Number of nodes in the algorithm.
%
%
%Usage: retval = n_nodes ()
%
%retval is of type int.
[varargout{1:nargout}] = casadiMEX(809, self, varargin{:});
end
function varargout = spCanEvaluate(self,varargin)
%[INTERNAL] Is the
%class able to propagate seeds through the algorithm?
%
%(for usage, see the example propagating_sparsity.cpp)
%
%
%Usage: retval = spCanEvaluate (fwd)
%
%fwd is of type bool. fwd is of type bool. retval is of type bool.
[varargout{1:nargout}] = casadiMEX(810, self, varargin{:});
end
function varargout = sz_arg(self,varargin)
%[INTERNAL] Get required
%length of arg field.
%
%
%Usage: retval = sz_arg ()
%
%retval is of type size_t.
[varargout{1:nargout}] = casadiMEX(811, self, varargin{:});
end
function varargout = sz_res(self,varargin)
%[INTERNAL] Get required
%length of res field.
%
%
%Usage: retval = sz_res ()
%
%retval is of type size_t.
[varargout{1:nargout}] = casadiMEX(812, self, varargin{:});
end
function varargout = sz_iw(self,varargin)
%[INTERNAL] Get required
%length of iw field.
%
%
%Usage: retval = sz_iw ()
%
%retval is of type size_t.
[varargout{1:nargout}] = casadiMEX(813, self, varargin{:});
end
function varargout = sz_w(self,varargin)
%[INTERNAL] Get required
%length of w field.
%
%
%Usage: retval = sz_w ()
%
%retval is of type size_t.
[varargout{1:nargout}] = casadiMEX(814, self, varargin{:});
end
function varargout = addMonitor(self,varargin)
%Add modules to be monitored.
%
%
%Usage: addMonitor (mon)
%
%mon is of type std::string const &.
[varargout{1:nargout}] = casadiMEX(815, self, varargin{:});
end
function varargout = removeMonitor(self,varargin)
%Remove modules to be monitored.
%
%
%Usage: removeMonitor (mon)
%
%mon is of type std::string const &.
[varargout{1:nargout}] = casadiMEX(816, self, varargin{:});
end
function varargout = checkInputs(self,varargin)
%[INTERNAL] Check if
%the numerical values of the supplied bounds make sense.
%
%
%Usage: checkInputs ()
%
[varargout{1:nargout}] = casadiMEX(817, self, varargin{:});
end
function varargout = name(self,varargin)
%Name of the function.
%
%
%Usage: retval = name ()
%
%retval is of type std::string.
[varargout{1:nargout}] = casadiMEX(818, self, varargin{:});
end
function varargout = type_name(self,varargin)
%Get type name.
%
%
%Usage: retval = type_name ()
%
%retval is of type std::string.
[varargout{1:nargout}] = casadiMEX(819, self, varargin{:});
end
function varargout = is_a(self,varargin)
%Check if the function is of a particular type Optionally check if name
%matches one of the base classes (default true)
%
%
%Usage: retval = is_a (type, recursive = true)
%
%type is of type std::string const &. recursive is of type bool. type is of type std::string const &. recursive is of type bool. retval is of type bool.
[varargout{1:nargout}] = casadiMEX(820, self, varargin{:});
end
function varargout = checkout(self,varargin)
%Checkout a memory object.
%
%
%Usage: retval = checkout ()
%
%retval is of type int.
[varargout{1:nargout}] = casadiMEX(823, self, varargin{:});
end
function varargout = release(self,varargin)
%Release a memory object.
%
%
%Usage: release (mem)
%
%mem is of type int.
[varargout{1:nargout}] = casadiMEX(824, self, varargin{:});
end
function varargout = linsol_solve(self,varargin)
%Create a solve node.
%
%
%Usage: retval = linsol_solve (A, B, tr = false)
%
%A is of type MX. B is of type MX. tr is of type bool. A is of type MX. B is of type MX. tr is of type bool. retval is of type MX.
[varargout{1:nargout}] = casadiMEX(825, self, varargin{:});
end
function varargout = linsol_cholesky_sparsity(self,varargin)
%Obtain a symbolic Cholesky factorization Only for Cholesky solvers.
%
%
%Usage: retval = linsol_cholesky_sparsity (tr = false, mem = 0)
%
%tr is of type bool. mem is of type int. tr is of type bool. mem is of type int. retval is of type Sparsity.
[varargout{1:nargout}] = casadiMEX(826, self, varargin{:});
end
function varargout = linsol_cholesky(self,varargin)
%Obtain a numeric Cholesky factorization Only for Cholesky solvers.
%
%
%Usage: retval = linsol_cholesky (tr = false, mem = 0)
%
%tr is of type bool. mem is of type int. tr is of type bool. mem is of type int. retval is of type DM.
[varargout{1:nargout}] = casadiMEX(827, self, varargin{:});
end
function varargout = rootfinder_fun(self,varargin)
%Access rhs function for a rootfinder.
%
%
%Usage: retval = rootfinder_fun ()
%
%retval is of type Function.
[varargout{1:nargout}] = casadiMEX(828, self, varargin{:});
end
function varargout = rootfinder_jac(self,varargin)
%Access Jacobian of the ths function for a rootfinder.
%
%
%Usage: retval = rootfinder_jac ()
%
%retval is of type Function.
[varargout{1:nargout}] = casadiMEX(829, self, varargin{:});
end
function varargout = rootfinder_linsol(self,varargin)
%Access linear solver of a rootfinder.
%
%
%Usage: retval = rootfinder_linsol ()
%
%retval is of type Function.
[varargout{1:nargout}] = casadiMEX(830, self, varargin{:});
end
function varargout = integrator_dae(self,varargin)
%Get the DAE for an integrator.
%
%
%Usage: retval = integrator_dae ()
%
%retval is of type Function.
[varargout{1:nargout}] = casadiMEX(831, self, varargin{:});
end
function varargout = qpsol_debug(self,varargin)
%Generate native code in the interfaced language for debugging
%
%
%Usage: qpsol_debug (file)
%
%file is of type std::ostream &.
[varargout{1:nargout}] = casadiMEX(832, self, varargin{:});
end
function varargout = paren(self, varargin)
if nargin==1 || (nargin>=2 && ischar(varargin{1}))
% Named inputs: return struct
assert(nargout<2, 'Syntax error');
assert(mod(nargin,2)==1, 'Syntax error');
arg = struct;
for i=1:2:nargin-1
assert(ischar(varargin{i}), 'Syntax error');
arg.(varargin{i}) = varargin{i+1};
end
res = self.call(arg);
varargout{1} = res;
else
% Ordered inputs: return variable number of outputs
res = self.call(varargin);
assert(nargout<=numel(res), 'Too many outputs');
for i=1:max(min(1,numel(res)),nargout)
varargout{i} = res{i};
end
end
end
function self = Function(varargin)
[email protected](SwigRef.Null);
if nargin==1 && strcmp(class(varargin{1}),'SwigRef')
if varargin{1}~=SwigRef.Null
self.swigPtr = varargin{1}.swigPtr;
end
else
tmp = casadiMEX(833, varargin{:});
self.swigPtr = tmp.swigPtr;
tmp.swigPtr = [];
end
end
end
methods(Static)
function varargout = conditional(varargin)
%Usage: retval = conditional (name, f, f_def, opts = casadi::Dict())
%
%name is of type std::string const &. f is of type std::vector< casadi::Function,std::allocator< casadi::Function > > const &. f_def is of type Function. opts is of type casadi::Dict const &. name is of type std::string const &. f is of type std::vector< casadi::Function,std::allocator< casadi::Function > > const &. f_def is of type Function. opts is of type casadi::Dict const &. retval is of type Function.
[varargout{1:nargout}] = casadiMEX(782, varargin{:});
end
function varargout = if_else(varargin)
%Usage: retval = if_else (name, f_true, f_false, opts = casadi::Dict())
%
%name is of type std::string const &. f_true is of type Function. f_false is of type Function. opts is of type casadi::Dict const &. name is of type std::string const &. f_true is of type Function. f_false is of type Function. opts is of type casadi::Dict const &. retval is of type Function.
[varargout{1:nargout}] = casadiMEX(783, varargin{:});
end
function varargout = check_name(varargin)
%Usage: retval = check_name (name)
%
%name is of type std::string const &. name is of type std::string const &. retval is of type bool.
[varargout{1:nargout}] = casadiMEX(821, varargin{:});
end
function varargout = fix_name(varargin)
%Usage: retval = fix_name (name)
%
%name is of type std::string const &. name is of type std::string const &. retval is of type std::string.
[varargout{1:nargout}] = casadiMEX(822, varargin{:});
end
end
end
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment