Created
May 31, 2018 19:29
-
-
Save jaems33/34a2136fed8757bed7897f72acab22ca to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import random | |
import numpy as np | |
import matplotlib.pyplot as plt | |
# Udacity provided code | |
class Robot(object): | |
def __init__(self, length=20.0): | |
""" | |
Creates robot and initializes location/orientation to 0, 0, 0. | |
""" | |
self.x = 0.0 | |
self.y = 0.0 | |
self.orientation = 0.0 | |
self.length = length | |
self.steering_noise = 0.0 | |
self.distance_noise = 0.0 | |
self.steering_drift = 0.0 | |
def set(self, x, y, orientation): | |
""" | |
Sets a robot coordinate. | |
""" | |
self.x = x | |
self.y = y | |
self.orientation = orientation % (2.0 * np.pi) | |
def set_noise(self, steering_noise, distance_noise): | |
""" | |
Sets the noise parameters. | |
""" | |
# makes it possible to change the noise parameters | |
# this is often useful in particle filters | |
self.steering_noise = steering_noise | |
self.distance_noise = distance_noise | |
def set_steering_drift(self, drift): | |
""" | |
Sets the systematical steering drift parameter | |
""" | |
self.steering_drift = drift | |
def move(self, steering, distance, tolerance=0.001, max_steering_angle=np.pi / 4.0): | |
""" | |
steering = front wheel steering angle, limited by max_steering_angle | |
distance = total distance driven, most be non-negative | |
""" | |
if steering > max_steering_angle: | |
steering = max_steering_angle | |
if steering < -max_steering_angle: | |
steering = -max_steering_angle | |
if distance < 0.0: | |
distance = 0.0 | |
# apply noise | |
steering2 = random.gauss(steering, self.steering_noise) | |
distance2 = random.gauss(distance, self.distance_noise) | |
# apply steering drift | |
steering2 += self.steering_drift | |
# Execute motion | |
turn = np.tan(steering2) * distance2 / self.length | |
if abs(turn) < tolerance: | |
# approximate by straight line motion | |
self.x += distance2 * np.cos(self.orientation) | |
self.y += distance2 * np.sin(self.orientation) | |
self.orientation = (self.orientation + turn) % (2.0 * np.pi) | |
else: | |
# approximate bicycle model for motion | |
radius = distance2 / turn | |
cx = self.x - (np.sin(self.orientation) * radius) | |
cy = self.y + (np.cos(self.orientation) * radius) | |
self.orientation = (self.orientation + turn) % (2.0 * np.pi) | |
self.x = cx + (np.sin(self.orientation) * radius) | |
self.y = cy - (np.cos(self.orientation) * radius) | |
def __repr__(self): | |
return '[x=%.5f y=%.5f orient=%.5f]' % (self.x, self.y, self.orientation) | |
def run(robot, tau_p, tau_d, tau_i, n=200, speed=1.0): | |
""" | |
Creates a 2-d trajectory of a robot. | |
Arguments: | |
tau_p: Float, controls importance of proportionality | |
tau_d: Float, controls importance of derivative | |
tau_i: Float, controls importance of integral | |
n: Integer, number of steps the robot should take. | |
speed: Float, how many seconds pass per timestep. | |
Returns: | |
x_trajectory, y_trajectory: A 2d list containing the | |
path taken by the robot. | |
""" | |
x_trajectory, y_trajectory = [], [] | |
integral = 0.0 | |
cte = robot.y | |
for i in range(n): | |
diff = (robot.y - cte) / speed | |
cte = robot.y | |
integral += cte | |
steer = (-tau_p * cte) - (tau_d * diff) - (tau_i * integral) | |
robot.move(steer, speed) | |
x_trajectory.append(robot.x) | |
y_trajectory.append(robot.y) | |
return x_trajectory, y_trajectory |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment